
FROM THE PREFACE 
TO THE FIRST EDITION 

The theory of continued fractions deals with a special algorithm that 
is one of the most important tools in analysis, probability theory, me- 
chanics, and, especially, number theory. The purpose of the present 
elementary text is to acquaint the reader only with the so-called regular 
continued fractions, that is, those of the form 

usually with the assumption that all the elements ai (i >_ I), are posi- 
tive integers. This most important and, a t  the same time, most thor- 
oughly studied class of continued fractions is a t  the basis of almost all 
arithmetic and a good many analytic applications of the theory. 

I feel that an elementary monograph on the theory of continued 
fractions is necessary because this theory, which formerly was a part 
of the mathematical program at the intermediate level, has now been 
dropped from that program, and hence is no longer included in the 
new textbooks on elementary algebra. On the other hand, the curricula 
a t  the more advanced levels (even in the mathematics divisions of 
universities) also omit this theory. 

Since the basic purpose of this monograph is to fill the gap in our 
textbook literature, it necessarily had to be elementary and, to as 
great a degree as possible, accessible. Its style is in large measure de- 
termined by this fact. Its content, however, goes somewhat beyond the 
limits of that minimum absolutely necessary for any application. This 
remark applies chiefly to the entire last chapter, which contains the 
fundamentals of the measure (or probability) theory of continued 
f ractions-an important new field developed almost entirely by Soviet 
mathematicians; it also applies to quite a number of items in the sec- 
ond chapter, where I attempted, to the extent possible in such an ele- 
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mentary framework, to emphasize the t1a4c. role of the apparatus of 
continued fractions in the stirtly of the arithmetic nature of irrational 
numbers. I felt that  i f  the funtlamentals of tllc theory of continued 
fractions were going to be puhlishecl in the form of a separate mono- 
graph, it would be a shame to leave unmcntionetl those highlights of 
the theory which are the subject of the greatest amount of contem- 
porary study. 

As regards the arrangement of the material, it need only be men- 
tioned tha t  the "formal" part of the study is contained in a special 
preliminary chapter. I n  this chapter, the elements of the continued 
fractions are assumed to be arbitrary positive numbers (not necessarily 
integers) and often-even more generally-simply independent vari- 
ables. A drawback to such a separate presentation is the fact tha t  the 
formal properties of the apparatus being studied are submitted to the 
reader before the subject matter itself and, therefore, are divorced 
from it.  This is no doubt undesirable from a pedagogical standpoint. 

However, a greater methodological precision is to be attained by 
this approach (because the reader can see immediately which properties 
of continued fractions come from the very st ructure of the apparatus 
and which exist only untlcr the a.;.;um~)tion of ~)ositive integral elc- a 

ments). Such a separate introductory esl)obition of the formal part of 
the study also makes possible the subsecjuent development of the 
arithmetic theory (which is the main theme of the study) on a n  already 
prepared formal base. Thus, the reader's attention may be concen- 
trated on the content of the material being cxpoundecl, without divert- 
ing it for purely formal considerations. 

A. KIIIWHIN 
Moscow 

February 12, 1935 
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Chapter I 

PROPERTIES OF THE 
APPARATUS 

b 

1. Introduction 
An expression of the form 

is called a regular or simple continued fraction. The letters ao, a,, an, 
, in the most general treatment of the subject, denote independent 

variables. In particular cases, these variables may be allowed to take 
values only in certain specified domains. Thus, ao, a,, an, may be 
assumed to be real or complex numbers, functions of one or several 
variables, and so on. For the purposes of the present book, we shall 
always assume a,, az, to be positive integers; a0 may be an arbitrary 
real number. We shall call these numbers the elements of the given con- 
tinued fraction. The number of elements may be either finite or infinite. 
In the iirst case, we shall write the given continued fraction in the form 

and call it a ji~tite continued fraction-more precisely an nth-order con- 
tinued fraction (so that an nth-order continued fraction has n + 1 
elements); in the second case, we shall write the continued fraction in 
the form (1) and call it an iztfinite continued fraction. 

Every finite continued fraction is the result of a finite number of ra- 
tional operations on its elements. Therefore, under our assumptions re- 
garding the elements, every finite continued fraction is equal to some 
real number. In particular, if all the elements are rational numbers, the 
fraction itself will be a rational number. On the other hand, we cannot 
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immediately assign any numerical values to an infinite continued frac- 
tion. Until we adopt some copvention, it is only a formal notation, 
similar to that for an infinite series whose convergence or divergence 
is not brought into question. Of course, it can, nonetheless, be the 
subject of mathematical investigations. 

Let us agree for reasons of technical convenience to write the in- 
finite continued fraction (1) in the form 

and the finite continued fraction (2) in the form 

[a0; a,, a,, . . . , a,]; (4) 

thus, the order of a finite continued fraction is equal to the number of 
symbols (elements) after the semicolon. 

Let us agree to call the continued fraction 

s, = [a,; a,. a,. . . . . a,], 

where ? 5 k < u, a sepneut of the continrit.(l fraction (4). Similarly, 
for arbitrary k > 0, we shall call s,. a segment of the infinite continued 
fraction (3). Obviously, any segment of any continued fraction (finite 
or infinite) is itself a finite continued fraction. Let us also agree to call 
the continued fraction 

a remaiuder of the finite continued fraction (4). Similarly, we shall call 
the continued fraction 

a remainder of the infinite continued fraction (3) .  Obviously, all the 
remainders of a finite continued fraction arc tinite continued fractions 
and all the remainders of an infinite continued fraction are infinite 
continued fractions. 

For finite continued fractions, it follo\vs that 

The analogous relationship 

lao; a,. a2. . . .  ]= [ao ;  a,,  a,. .... a ,-,, r,] (k>O) 
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for infinite continued fractions can be meaningful only as a formal 
(trivial) notation since the element r k  on the right side of this equation, 
being an infinite continued fraction, has no definite numerical value. 

2. Convergents 
Every finite continued fraction, 

being the result of a finite number of rational operations on its ele- 
ments, is a rational function of these elements and, consequently, can 
be represented as the ratio of two polynomials 

in ao, a,, , a,, with integral coefficients. If the elements have nu- 
merical values, the given continued fraction is then represented in 
the form of an ordinary fraction p /q .  However, such a representation 
is, of course, not unique. For what follows, it will be important for us 
to havc a dejnile representation of a finite continued fraction in the 
form of a simple fraction-a representation which we shall call caitorzi- 
cat. We shall define such a representation by induction. 

For a zeroth-order continued fraction, 

we take as our canonical representation the fraction ao/l. Suppose now 
that canonical representations are defined for continued fractions of 
order less than n. By equation (S), an nth-order fraction 

1 [a,; a,, . . . , a,] = [a,; r l ]  = a, +- . 
r1 

Here, 

is an (n - 1)st-order continued fraction, for which, consequently, the 
canonical representation is already defined. Let us represent it as 

then, 

47' aop' + q' [ao; a,, . . . , a,] = a, f a  = --- . 
P ' 
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We shall take this last fraction as our canonical representation of the 
continued fraction (ao; a) ,  , a,]. Thus, by setting 

we have the following expressions for the numerators and denominators 
of these canonical representations: 

y = a , f l - t q r l  q =  p'. (6) 

Thus, we have uniquely defined canonical representations of continued 
fractions of all orders. 

In  the theory of continued fractions, an especially important role is 
played by the canonical representations of the segments of a given 
(finite or infinite) continued fraction a = [ao; 01, 02, - '1. We shall 
denote by p J q k  the canonical representation of the segment 

of the continued fraction, and we shall call it the kth-order convergent 
(or appro xi man^) of the continued fraction a. This concept is defined 
in exactly the same way for finite and infinite continued fractions. The 
only difference is that a finite continued fraction has a finite number 
of convergents, whereas an infinite continued fraction has an infinite 
number of them. For an nth-order continued fraction a, obviously 

such a continued fraction has 12 + 1 convergents (of orders, 0, 1, 2, . . . , 4. 
'I'IIEOKEM 1 (the rule for the formation of thc convergents). For arbi- 

lrary k 2 2, 
P&= a k ~ n - l  + P & - 2 1  

QR = a&&- 1 + 11k-2- I (7) 

PROOF. In the case of k = 2, the formulas in (7) are easily verified 
directly. Let us suppose that they are true for all k < n. Let us then 
consider the continued fraction 

[ a 1 ;  a p  . I a,,] 

and let us denote by p',/qrr its rth-order convergent. On the basis of 
the formulas in (6) ,  

P. = a& +q:-l, 

4, = P:,+ 

And since, by hypothesis, 

p1-i = anp;-, + p;-,, 

4:-, = anq(,-2 + 4 - 3  

(here, we have an rather than because the fraction [al; or, , a.1 
begins with a1 and not with ao), it follows on the basis of (6) that 

un = au(anp:,-, +pi-,)  +(anq:-, +qn-3) 

= a n ( a @ ; - , f  qi-2)+ ( l l g ~ L - 3 f  qn-3) 

=anPn-l+ Pn-2) 

'ln = a , i ~ l - 2  $ P:, 3=an4n- l  ' t q n - 2 ,  

which completes the proof. 
These recursion formulas (7), which express the numerator and de- 

nominator of an nth-order convergent in terms of the element an and 
the numerators and denominators of the two preceding convergents, 
serve as the formal basis of the entire theory of continued fractions. 

REMARK. It is sometimes convenient to consider a convergent of 
order -1; in this case, we set p-1 = 1 and q-1 = 0. Obviously, with 
this convention (and only then), the formulas of (7) retain their valid- 
ity for k = 1. 

THEOKEM 2. For all k 2 0, 

PROOF. Multiplying the first formula of (7) by q k - 1  and the second 
by pkdl and then subtracting the first from the second, we obtain 

and since I ,"i~ 
L D - : j  

qop-1- p+1= 1, 4 
the theorem is proved. 
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COKOLLAKY. For all k 2 1, 

PROOF. By multiplying the first formula of (7) by qk-2 and the sec- 
ond by p k 4  and then subtracting the first from the second, we obtain, 
on the basis of Theorem 2, 

which completes the proof. 
COROLLARY. For all k >_ 2, 

The simple results that we have just ohtailled make it easy for us 
to reach certain very import~nt conclusions concerning the relative 
values of the convergents of a given continued fraction. Specifically, 
(10) shows that the convergents of even order form an increasing se- 
quence and that those of odd order form a decreasing sequence. Thus, 
these two sequences tend toward each other (dl this under our assump- 
tion that the elements from a ,  on are positive). Since, by (O), every 
odd-order convergent is greater th'an the immediately following even- 
order convergent, it follows that every odd-order convergent is greater 
than any even-order convergent. Therefore, we may draw the follow- 
ing conclusions. 

THEOREM 4. Everz-order co~zvergerzts form urc irzcreasilzg and odd-order 
coirvergeuts a decreasirzg sequertce. .,llso, mery odd-order convergerzl is 
greater tharz auy evert-order comergerzl. 

I t  is particularly evident that, for a finite continued fraction a, every 
even-order convergent is less than a and every odd-order convergent 
is greater than a (except, of course, the last convergent, which is 

We c nclude a). this section with the proof of two simple, but extremely 
important, propositions concerning the numerators and denominators 
of the convergents. 
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'L'III:,OKLM 5. For arbifrury k (1 5 k 5 n), 

[a,; a,,  a,. ..., an]=  p k -  Irk + p k - 2  

4 k - I r k  + 4 k - 2  

(Here, pi, qi, r i  refer to the continued fraction on the left side of this 
equation.) 

P ~ o o e  From (j), 

[ao; alp a2, . . ., an] = lao; al ,  a2, + * ,  ak+ rkl* 
I 

i 
The continued fraction on the right side of this equation has as a ! 

(k - 1)st-order convergent the fraction p~l /qk-l .  Its kth-order con- / 
vergent, pk/qr, is equal to the fraction itself; and since from (7) ! 

i 

TI~EOREM 6. For arbitrary k 2 1, 

PROOF. For k = 1, this relationship is obvious because it is of the 
form 

1 

Suppose that k > 1 and that 

Y h - 1  - -- . . .. a , ] .  
( I k - 2  

On the basis of the equations in (7 ) ,  

q k  = a&(7k-1 i -qk-2 
and we have 

1 Therefore, from formulas ( 5 )  and (12), 

which completes the proof. 

I 
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3. Infinite continued f ructions 
To every infinite continued fraction 

[ao; a l ,  a*. . * I ,  

there corresponds an iniinite sequence of convergents 

Every convergent is some real number. If the sequence (14) converges, 
that is, if it has a unique limit a, it is natural to consider this number a 
as the "value" of the continued fraction (13) and to write 

a=[a,; a,, a,, . . . I .  

The continued fraction (13) itself is then said to converge. If the se- 
quence (14) does not have a definite limit, we say that the continued 
fraction (13) diverges. 

In many of their properties, convergent infinite continued fractions 
are analogous to finite continued fractions. 'I'he basic property which 
makes possible the further extension of this analogy is expressed by the 
following theorem. 

FO HE OR EM 7. If the infinite continued/racliort (13) cowerges, so do all 
of ils remainders; conversely, ij at leas! one o j  the remainders of ihe con- 
t inued fraclion (13) converges, Ihe cont i,tued fracliort itself converges. 

PROOF. Let us agree to denote by pl./qti the convergents of a given 
continued fraction (1,3), and by ~ ' k / y ' , ~  the convergents of any one of 
its remainders, for example, r,,. From formula ( l l ) ,  we have 

I t  follows immediately that if the remainder r ,  converges, that is, if 
as k -+ the fraction pfk/qfk approaches a limit which we shall also 
denote by r,, then the fraction pntx/y,,+k will converge to a limit a 
equal to 

By solving (15) for pfk/qfk, we establish the validity of the converse, 
thus completing the proof of the theorem. 
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We note that formula (16), which we have just established for con- 
vergent infinite continued fractions, is exactly analogous to formula 
( l l ) ,  which we proved earlier for finite continued fractions. Similarly, 
the theorem analogous to Theorem 5 holds for infinite continued frac- 
tions. 

The following propositions for convergent infinite continued frac- 
tions follow directly from Theorem 4 of the preceding section. 

THEOREM 8. T h e  value of a convergent infinite continued fraction i s  
greater than a n y  of i t s  even-order convergents and i s  less than a n y  of i t s  
odd-order convergents. 

Furthermore, on the basis of this theorem, the corollary to Theo- 
rem 2 of the preceding section implies the following result, which plays 
a basic role in the arithmetic applications of the theory of continued 
fractions. 

THEOREM 9. T h e  value a of the convergent infinite continued fraction 
(13) for arbitrary k >_ 0 saiisfies the inequality1 

Obviously, Theorem 9 is also valid for the finite continued fraction 

for all k < n, except that, for the single case of k = n - 1, the in- 
equality must be replaced by equality, since a = p,/q,. If a is the value 
of a convergent infinite continued fraction (13), we shall also refer to 
the elements of that continued fraction as the elements of the number a. 
Similarly, we shall refer to the convergents, segments, and remainders 
of the continued fraction (13) as the convergents, segments, and re- 
mainders, respectively, of the number a. On the basis of Theorem 7, all 
the remainders of a convergent infinite continued fraction (13) have 
definite real values. 

The question naturally arises as to whether there are tests for the 
convergence of continued fractions, just as for infinite series. In the 
case with which we are concerned, that is, when a ,  > 0, for all i 2 1, 
there exists an extremely simple and convenient test for convergence. 

We note that, under our assumptions, qr, > 0, for all k 2 0 (since q~ = 1 and 
ql = a,, we can show by induction from the second part of eq. 171 that q h  > 0, 
for all k > 1) .  
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TIIEOKEM 10. Fur the continuedfracliun (13 )  to converge, i t  i s  neces- 
sary and suficient that the series 

diverge. 
PROOF. I t  clearly follows from Theorem 4 that a necessary and suffi- 

cient condition for the convergence of an infinite continued fraction is 
that the two sequences referred to in that theorem have the same limit. 
(Theorem 4 clearly implies that each of these sequences has a limit.) 
And, as formula (9) shows, this is the case if and only if 

as k + w .  (1 8) 

Thus, condition (18) is necessary and sufficient for the convergence of 
a given continued fraction. 

Suppose that the series (17) converges. From the second formula 
of (71, 

q k  > 4 k - 2  (k >, 1). 

Therefore, for arbitrary k,  we have either qk > (ILL or qk-1 > qk-2. 
In the first case, the second formula of (7) yields 

and therefore, for sufficiently large k (when uk: < 1, which, because 
of the convergence of the series in eq. [I?], must be the case for k 2 ko), 
we have 

In the second case, the same formula gives, for ak < 1, 

Thus, for all k 2 ko, we have 
1 

4 k  < 

where 1 < k. If I >_ KO, we may apply the same inequality to ql. 

By continuing this reasoning, we arrive at the inequality 
Qs 

qk < (1-ak)(I  - a l )  ... ( I - a r )  * (19) 

where k > 1 > . > r 2 ko and s < ko. But, because of the as- 
sumed convergence of the series in (17), the infinite product 

as we know, converges: that is, it has a positive value, which we denote 
by X. Obviously, 

k 

Therefore, if we denote by Q the largest of the numbers qo, ql, , 
q+l, we conclude from inequality (19) that 

and the relationship in (18) cannot hold. Therefore, the given continued 
fraction diverges. 

Conversely, suppose that the series in (17) diverges. Since q k  > qk-2, 
for all k 2 2, if we denote by c the smallest of the numbers qo, 41, we 
have k 2 0, for arbitrary q k  > c. Therefore, the second formula of (7) 
gives us 

%>%-d- c a k  ( k > , 2 ) .  

Successive application of this inequality gives us 

and 
k  

so that 
2k+1  

q 2 a  + q 2 a + l  > f 9 1  f 2 an; 
n = l  
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in other words, for all k ,  
k 

We have already proved this inequality for odd values of k, and it 
can obviously be established for even values of k by the same method. 
I t  then follows that a t  least one of the factors in the product qkqk-I 
exceeds +cZ:,lan, and since the other factor is never less than c, we 
have A 

Because of the assumed divergence of the series in (17), this implies 
relationship (18) and, consequently, the convergence of the given con- 
tinued fraction. This completes the proof of Theorem 10. 

4 .  Continued fractions with natural elements N 

From this point until the end of the book, we shall assume that ele- 
ments a ~ ,  a2, . are natural numbers, that is, positive integers, and 
that a. is an integer, though not necessarily positive. If such a con- 
tinued fraction is infinite, Theorem 10 ensures its convergence. There- 
fore, we can henceforth freely assume that any continued fraction that 
we are dealing with is convergent, and we can speak of its "value". 
If such a continued fraction is finite, and if its last element (a,) is 1, it 
is evident that r,-1 = a,-, + 1 is an integer. Therefore, in this case, 
we can write the given nth-order continued fraction [ao; al, az, . . , 
a,-1, 11 in the form of an (n - 1)st-order continued fraction [ao; al, az, ... , an-, + 11; in this new form, the last element is clearly greater 
than unity. 

Because of this fact, in all that follows we can exclude from consider- 
ation finite continued fractions whose last elements are equal to unity 
(except, of course, for the zeroth-order fraction [I]). This plays an im- 
portant role in the question of the uniqueness of the representation 
of numbers by continued fractions (see Chap. 11, sec. 5). 

Obviously, the numerators and denominators of the convergents, in 
the case now under consideration, are integers. (For P-1, 4-1, PO, 
and qo, this can be seen immediately, and for the numerators and de- 
nominators of the remaining convergents, it follows from the formulas 
in eq. 171.) Furthermore, we have the following very important propo- 
sition. 

THEOREM 11. All convergents are irreducible. 
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The proof follows immediately from formula (8), since any common 
divisor of the numbers pn and q, would a t  the same time be a divisor 
of the expression qnp,-1 - p,q,-I. 

The second formula of (7) shows that qk > qk-1, for every k > 2. 
Therefore, the sequence 

is always increasing. We have a much stronger proposition concerning 
the rate of increase of the numbers qk. 

THEOREM 12. For arbitrary2 k >_ 2, 

PROOF. For k 2 2, 

Successive application of this inequality yields 

q Z k  > 2kqu = 2k, q1)+1 > 2kq1 >/ 2 k s  

L 

I 

which proves the theorem. Thus, the denominators of the convergents < I  
increase a t  least as rapidly as the terms of a geometric progression. 

Intermediate fractions.-Suppose that k 2 2 and that i is an arbi- 
trary negative integer. The difference 

which, as is easily seen, is equal to 

(-I)k 
[ q k - l ( f  + 1 ) + q A - 2 ]  [ q k - l i + 4 k - 2 ]  ' 

has the same sign for all i > 0, depending only on whether k is even 
or odd. I t  follows from this that the fractions 

Here, and in all that follows, in the case of ajinite continued fraction only those 
values of k for which q k  is meaningful are to be considered. 
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form, for even k, an increasing and, for odd k, a decreasing sequence 
(see Theor. 4). The first and last terms of this sequence are either both 
even- or both odd-order convergents. The intervening terms (if there 
are any, that is, if ak > I),  we shall call intermediate fractions. In arith- 
metic applications, these intermediate fractions play an important 
role (though not as important a role as the convergents). To make 
their mutual disposition and the law of their progressive formation 
clearer, it is convenient to introduce the concept of the so-called 
mediant of two fractions. 

The mediant of two fractions a/b and c/d, with positive denomina- 
tors, is the fraction 

LEMMA. The mediant of two fractions always lies between them in value. 
PROOF. Suppose, for definiteness, that a/b 5 c/d. Then, bc -, 

ad 2 0, and, consequently, 
a + c  a b c - a d  - - _  a + c  c - a d - b c  
b + d  b  b ( b + d )  hO' b-7---(bso* 

which proves the lemma. 
We see immediately that each of the intermediate fractions in the 

progression of (20) is the mediant of the preceding fraction and the 
fraction pk-l/qk-l. By going through progression (20) and successively 
forming the mediants, we proceed from the convergents pk-2/qh-2 in 
the direction of the convergents pL_l/yk-l. The concluding step in 
this sequence will occur when the mediant constructed coincides with 
p,/y,. This last fraction lies between pn-l/yh-, and ~ ~ - ~ / y k - 2 ,  as we 
know from Theorem 4. We also know that the value a of the given 
continued fraction lies between pk-l/yk-l and pk/qh, and that the 
fractions pk-2/~k-~ and pk/yk, which are either both of even order or 
both of odd order, lie on the same side of the number a .  I t  follows from 
this that the entire progression in (20) lies on one side of the number a 
and that the fraction ph-l/qx-l lies on the other side. In particular, the 
fractions (pk-1 + pk&?)/(qk-, + qk-2) and pk-l/qk-, are always on 
opposite sides of a .  In other words, the value o j  a continued fraction 
always lies between an arbitrary convergent and Ihe mediant of that con- 
vergent and the preceding one. (We suggest that the reader make a draw- 
ing to illustrate the relative positions of all these numbers.) 

This remark indicates a method whereby, if we know the conver- 
gents pk-2/qk-2 and pk-l/qk-l, we can construct the subsequent con- 
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vergent pk/qk without knowing the element a* (but using our knowl- 
edge of the value a of the continued fraction). Specifically, we first 
take the mediant of the two given fractions, then the mediant of this 
mediant and pk-l/pk-1, and so on, each time taking the mediant of the 
mediant just obtained and the fraction pk-l/qk- I. We already know 
that these consecutive mediants will initially approximate a. The last 
mediant of this progression that lies on the same side of a as does the 
initial fractions pk-2/qk-2 is pk/qk. For, as We already know, pk/qk lies 
somewhere among the mediants in the progression, and on the same 
side of a as pk-2/qk-2. Therefore, it only remains for us to show that 
the subsequent mediant will lie on the opposite side of a. But the last 
mediant is (pk + pk-l)/(qk + qk-1) and, on the basis of the remark 
made above, it does indeed lie on the opposite side of the number a. 

There is another even more important consequence of the relative 
positions of a number a, and its convergents and intermediate frac- 
tions. The intermediate fraction (pk + pk+~)/(qk + qk+~), since it is 
between pk/qk and a, lies closer to pk/qk than does a ;  that is, 

(Equality is impossible here because this would indicate that 

that is, that a would be a finite continued fraction with last element 
equal to unity, which we excluded from consideration in the beginning.) 

Thus, we arrive at the following important result. 
THEOREM 13. For all k >_ 0, 

This inequality, which gives a lower bound for the difference 
1 a - (pk/qk) 1 ,  supplements the inequality exhibited in Theorem 9, 
which provides an upper bound for the same difference. 



Chapter ZZ 

FRACTIONS 

5. Continued fractic ns as  an apparatus for 
representing real numbers 

THEOREM 13. TO every real number a, there corresponds a unique con- 
tinued fraction with value equal lo a. This fruclion is finite i j  a is rational 
and infinite ij a is irrational.' 

PROOF. We denote by a" the largest integer not exceeding a. If a is 
not an integer, the relation 

allows us to determine the number rl. Here, clearly, rl > 1, since 

In general, if r, is not an integer, we denote by u, the largest integer 
not exceeding r, and define the number r,,+l by the relation 

This procedure can be continued as long as r,, is not an integer; here, 
clearly, r, > 1 (n >_ 1). 

Equation (22) shows that 

Suppose that, in general, 

1 We remind the reader that we are considering continued fractions with integral 
elements, that a, > 0 for i > 1, and that the last element of every h i t e  continued 
fraction must be different from unity. 
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Then, from equations (5) and (23), we have 

a = [a,; a, ,  a,, . . . , an-,.  an, rn+J;  

thus, (24) is valid for all n (assuming, of course, that rl, r2, , rn-l 
are not integers). 

If the number a is rational, all the r, will clearly be rational. I t  is 
easy to see that, in this case, our process will stop after a finite number 
of steps. If, for example, r, = a /b ,  then 

where c < b, since r, - a, < 1. Equation (23) then gives 

(provided c is not equal to zero, that is, if r, is not an integer; if r, is 
an integer, our assertion is already satisfied). Thus, r,+l has a smaller 
denominator than does r,. I t  follows from this that if we consider rl, r2, 

, we ~uilst eventually come to an integer r ,  = a,. But, in this case, 
(24) asserts that the number a is represented by a finite continued 
fraction, the last element of which is a, = r, > 1. 

If a is irrational, then all the r, are irrational and our process is in- 
finite. Setting 

(where the fraction pn/qn is irreducible and qn > 0) ,  we have, by (24) 
and (16) of Chapter I ,  

On the other hand, it is obvious that 

so that 

and, consequently, 
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Thus, 

but this means that the infinite continued fraction [ao; al, az, - 1  has 
as its value the given number a. 

Thus, we have shown that any number a can be represented by a 
continued fraction; this fraction is finite if a is rational and infinite if a 
is irrational. I t  remains for us to show the uniqueness of the expansions 
that we have obtained. We note first that uniqueness follows essentially 
from the considerations of section 4, Chapter I, where we saw that once 
we know the value of a given continued fraction we can effectively con- 
struct all its convergents and hence all its elements. However, the re- 
quired uniqueness can be established in a much simpler manner. Sup- 
pose that 

a=[a,; a, ,  a,, . . . ]= [ah ;  a; ,  a;. . . . I l  
where the two continued fractions may he cithcr linitc or infinite. Let 
us dcnotc by [ X I  the largest integer not cxcec(ling x. I'irst of all, it is 
obvious that a. = [a] and aIo = [a], so that uo = u'". Furthermore, if 
it is established that 

then, in analogous notation, 

and, on the basis of formula (16) of Chapter I, 

so that, r ,+~ = rfn+,. Since a , + ~  = [r,+l] and a',,+l = [rtn+1], we have 

= 
1: that is, the two fractions coincide completely. 

We not that the above argument would be impossible if we admit- 
ted finite continued fractions with the last element equal to unity; if, 
for example, a ,+~  = 1 were such a last element, we would have rn = 

a, + 1 and a, # [r,]. 
We have just shown that real numbers are uniquely represented by 
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continued fractions. The basic significance of such a representation 
consists, of course, in the fact that, knowing the continued fraction 
that represents a real number, we can determine the value of that num- 
ber with an arbitrary prestated degree of accuracy. Therefore, the ap- 
paratus of continued fractions can, a t  least in principle, claim a role 
in the representation of real numbers similar to that, for example, of 
decimal or of systematic fractions (that is, fractions constructed ac- 
cording to sowe system of calculation). 

What are the basic advantages and shortcomings of continued frac- 
tions as a means of representing the real numbers in comparison with 
the much more widely used systematic representation? To answer this 
question, we need first to have a clear picture of the demands that may 
and should be made of such a representation. Clearly, the first and 
basic theoretical demand should be that the apparatus reflect as much 
as possible the properties of the number that it represents, so that these 
properties may be brought out as completely and as simply as possible 
each time that the representation of the number by this apparatus 
is given. 

With respect to this first demand, continued fractions have an un- 
deniable and considerable advantage over systematic (and, in par- 
ticular, decimal) fractions. We shall gradually see this during the 
course of the present chapter. To a degree, in fact, this is clear even 
from a priori considerations. Since a systematic fraction is connected 
with a certain system of calculation, it therefore unavoidably reflects, 
not so much the absolute properties of the number that it represents, 
as its relationship to that particular system of calculation. Continued 
fractions, on the other hand, are not connected with any system of 
calculation; they reproduce in a pure form the properties of the num- 
ber that they represent. Thus, we have already seen that the ration- 
ality or irrationality of the number represented finds complete ex- 
pression in the finiteness or infiniteness of the continued fraction 
corresponding to it. As we know, for systematic fractions the corre- 
sponding test is considerably more complicated: the finiteness or in- 
finiteness of the representing fraction depends not just on the number 
represented but also, in a very real way, on its relationship to the 
chosen system of calculation. 

However, besides the basic theoretical demands that we have men- 
tioned, certain demands of a praclical nature should naturally be made 
for any apparatus that is used to represent numbers. (Some of these 
practical considerations may also have certain theoretical value.) Thus, 
it is of great importance that the apparatus make it possible and rea- 
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sonably easy to find values that approximate the represented number 
with any arbitrary degree of accuracy. The apparatus of continued 
fractions satisfies this demand to a very high degree (and, in any case, 
better than does the apparatus of systematic fractions). In fact, we 
shall soon see that the approximating values given by continued frac- 
tions have, in a certain extremely simple and important sense, the 
property of being the best approximations. 

There is, however, another and yet more significant practical de- 
mand that the apparatus of continued fractions does not satisfy at  all. 
Knowing the representations of several numbers, we would like to be 
able, with relative ease, to find the representations of the simpler func- 
tions of these numbers (especially, their sum and product). In  brief, 
for an apparatus to be suitable from a practical standpoint, it must ad- 
mit sufficiently simple rules for arithmetical operations; otherwise, it 
cannot serve as a tool for calculation. We know how convenient sys- 
tematic fractions are in this respect. On the other hand, for continued 
fractions there are no practically applicable rules for arithmetical oper- 
ations; even the problem of finding the continued fraction for a sum 
from the continued fraction represen t ing t hc addends is exceedingly 
complicated, and unworkable in computational practice. 

The advantages and shortcomings of continued fractions as com- 
pared with systematic fractions determine (to a great extent) the areas 
of application of these two representations. Whereas, in computation, 
systematic fractions are used almost exclusively, the apparatus of con- 
tinued fractions finds its primary application in theoretical investiga- 
tions involving the study of the arithmetic laws of the continuum and 
the arithmetic properties of individual irrational numbers. The appa- 
ratus of continued fractions is an irreplaceable tool for theoretical in- 
vestigations, and the prime purpose of all that follows will be its appli- 
cation to that purpose. 

6. Convergents as best approximations 
To represent an irrational number a as an ordinary rational fraction 
(to within a specified margin of accuracy), it is natural to use the con- 
vergent~ of the continued fraction representing a. The degree of ac- 
curacy of this approximation is given by Theorems 9 and 13 of Chap- 
ter I. Specifically, we have 
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The problem of approximating irrational numbers by rational frac- 
tions consists, in its simplest form, of determining which of the fractions 
that differ from the given irrational number by not more than a speci- 
fied amount has the lowest (positive) denominator. The problem (stat- 
ed in this manner) can be meaningful even in the case in which the 
number a is rational. For example, if a is a fraction with an extremely 
large numerator and denominator, we may want to approximate this 
number by a fraction whose numerator and denominator are smaller. 
From a purely practical point of view, there is no real difference be- 
tween these two cases (rational and irrational a), since, in practice, 
every number is given with only a certain degree of accuracy. 

I t  is immediately clear that the apparatus of systematic fractions is 
completely unsuitable for solving this problem, since the denominators 
of the approximating fraction that it provides are determined exclusive- 
ly by the chosen system of calculation (in the case of decimal fractions, 
they are powers of ten); hence, the denominators are completely inde- 
pendent of the arithmetic nature of the number represented. On the 
other hand, in the case of a continued fraction, the denominators of 
the convergents are completely determined by the number repre- 
of the convcrgcn t s arc completely determined by the number repre- 
sented. We, therefore, have every reason to expect that these conver- 
gents (since they are connected in a close and natural way with the 
number represented, and are completely determined by it) will play a 
significant role in the solution of the problem of the best approxima- 
tion of a number by a rational f r a~ t i on .~  

Let us agree to call a rational fraction a / b  (for b > 0) a best approxi- 
mation of a real number a if every other rational fraction with the same 
or smaller denominator differs from a by a greater amount, in other 
words, if the inequalities 0 < d 5 b, and a / b  # c /d  imply that 

2 Two interesting algorithms for representing irrational numbers were advanced 
by M. V. OstrogradskiI shortly before his death. His brief notes on the matter were 
discussed on bits of paper in the manuscript depository of the Academy of Sciences 
of the Ukrainian SSR. These notes were deciphered in an article by E. Ya. Remez, 
"0 znakoperemennykh ryadakh, kotorye mogut byt'svyazany s dvumya algorif- 
mami M. V. Ostrogradskogo dlya priblizheniya irratsional'nykh chisel" ("Alternat- 
ing series that may be connected with two algorithms of M. V. Ostrogradskii for 
approximating irrational numbers"), Uspekhi mdcmadichcskikh nauk, 6, No. 5 (45), 
3 3 4 2  (1951). As Remez discovered, Ostrogradskii's algorithms give better approxi- 
mations than continued fractions in certain cases. Unfortunately, no detailed study 
of these algorithms, even for computational purposes, has as yet been made. (B. G.) 
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THEOREM 15. Every bed approximulion of a number a is a convergent 
or an  infermediate fraction of the continued fraction representing that 
number. 

PRELIMINARY KEMAKK. For this proposition to have no exceptions 
it is necessary, as we agreed in section 2, to introduce into our consider- 
ations convergents of order - 1, by setting p-1 = 1 and 4-1 = 0. For 
example, the fraction is, as we can easily verify, a best approximation 
of the number a;  however, it is not one of the convergents or intermed- 
iate fractions of that number, since the set of these fractions (if we 
begin with the convergents of order zero) consists of only two numbers, 
namely, 9 and ;f. However, if we take the fraction & as a convergent 
of order - 1, this set will consist of 

thus including the fraction 4. 
PROOF. Suppose that a /b  .is a best approximation of the number a. 

Then, first of all, a /b  >_ ao, because if a /b  < ao, the fraction ad1 (be- 
ing distinct from a /b  and having a denominator that is no greater 
than b) would lie closer to a than does a/b. Therefore, a /b  would not 
be a best approximation. 

In a similar manner, we can show that 

Thus, we know that a0 < (a/b)  < a0 + 1.  I f  a /b  = a0 or a /b  = a0 + 1, 
the conclusion of the theorem would be evident since ao/ l  = p o / q o  is 
a convergent and (a0 + 1)/1 = (po + p-I)/(qo + 4-1) is an interme- 
diate fraction of a. i 

If the fraction a /b  does not coincide with any convergent or inter- 
mediate fraction of the number a, it must lie between two consecutive 
such fractions. For instance, for properly chosen k and r (with k > 0, 
0 5 r < a k + ~  or k = 0, 1 5 r < a l ) ,  it will lie between the fractions 

and 

so that 
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But, on the other hand, it is obvious that . 

where m is a positive integer and hence is a t  least equal to unity. Con- 
sequently, 

1 1 
b (q*r + q,-,) < {q ,  ( f  + 1) + q&-,J {4*f + 4 , 4 )  

and hence, 
q& (f + 1) + h l <  b* 

The fraction 

with denominator less than b, is closer to the number a than is the frac- 
tion 

(because, in general, from the result of sec. 4, every intermediate frac- 
tion is closer to a than is the preceding one) and hence, is also closer 
than is the fraction a/b,  which lies between expressions (25) and (26). 
However, this contradicts the definition of a best approximation, thus 
proving Theorem 15. 

In the definition of the concept of best approximation, which is a t  
the basis of this theorem, we evaluated the closeness of the rational 
fraction a/b  to the number a in terms of the smallness (in absolute 
value) of the difference a - (a /b)  (which, of course, is the most natu- 
ral procedure). However, it is often more important or convenient in 
number theory to examine the difference ba - a,  which differs from 
the preceding one only by the factor b. Thus, the smallness of this dif- 
ference (in absolute value) can also serve as a measure of the closeness 
of the fraction a/b  to the number a. This change from one characteris- 
tic to another may a t  first glance seem trivial, and frequently it is. 
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However, this is not always the case, as we shall soon see. The signifi- 
cant point is that the factor b is not a constant, but is dependent on 
the approximating fraction itself, and changes when this fraction is 
changed. 

Let us now agree to refer to those best approximations mentioned 
in Theorem 15 as best approximations of the first kind. Let us further 
agree to call the rational fraction a /b  (where b > 0) a best approxima- 
tion of the second kind of a number a if the inequalities c/d # a /b  and 
0 < d 5 b imply 

Ida-cI > Iba-aI. 

Best approximations of the second kind are thus defined in terms of 
the characteristic I ba - a 1 in a manner completely analogous to the 
definition of best approximations of the first kind in terms of the 
characteristic 1 a - a/b  1 . 

I t  is easy to show that every best approximation of the second kind 
must necessarily be a best approximation of the first kind. For if 

on multiplying the first of these inequalities by the third, we would 
obtain 

in other words, if the fraction a/b  was not a best approximation of the 
first kind, it could not be a best approximation of the second kind. 

The converse is not true: a best approximation of the first kind can 
fail to be a best approximation of the second kind. For example, the 
fraction + can easily be shown to be a best approximation of the first 
kind of the number 3. However, that it is not a best approximation of , 
the second kind is seen from the inequality 

I t  follows from these remarks and from Theorem 15 that all best 
approximations of the second kind are convergents or intermediate 
fractions. However-and here lies the fundamental significance of the 
apparatus of continued fractions in finding best approximations of the 
second kind-we can make a much stronger assertion. 

THEOREM 16. Every best approximation oj  the second kind i s  a con- 
vergent. 
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PROOF. Suppose that a fraction a /b  is a best approximation of the 
second kind of the number 

whose convergents will be denoted by p Jqk. If a /b  < ao, we would 
obtain 

1 1  *a-a,-,~ <Ia-%I, ( Iba- -aI  ( 1 4 6 ) .  

that is, a /b  would not be a best approximation of the second kind. 
Thus, a/b  >_ ao. But then the fraction a/b,  if i t  did not coincide with 
one of the convergents, would either lie between two convergents 
pk-l/qk-l and pk+~/qk+l, or would be greater than pl/ql. In  the first 
case, 

and 

so that 

on the other hand, 

and hence, 

whereas 

so that 

Inequalities (27) and (28) show that a/b  is not a best approximation 
of the second kind. 

In the second case (that is, if a/b > pl/ql),  we have 

so that 
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On the other hand, it is obvious that 
I 

I1 . ~ - - Q ~ J < ~ .  

which again contradicts the definition of a best approximation of the 
second kind. This proves Theorem 16. 

Let us now consider the converse of Theorems 15 and 16. That the 
converse of Theorem 15 is false can be seen by considering +, which, 
as is easily shown, is an intermediate fraction for the number a = 6, 
while it is not a best approximation, since 

There are many more such examples, as the reader can verify for him- 
self. 

On the other hand, Theorem 16 does have an almost complete con- 
verse, which, of course, greatly enhances i ~ s  value. 

Tf I fa) R I;M 17. I h r y  t ouvrlrgcd i s  ( L  uppro.t.imulio,t (4' /he st.c.o/rtl 
k i d ,  the sole excepliori being the Irizliul cusc o/' 

PRELIMINARY REMAKE;. In the case of a = a. + 4, the fraction 
po/qo = ao/l is not a best approximation of the second kind because 

PROOF. Let us examine the expression 

where y takes the values 1, 2, , q b ,  and s can take arbitrary in- 
tegral values. We denote by yo that value of y for which expression 
(29), after suitable choice of x, takes the smallest possible value. (If 
there are several such values of y, we take the smallest of these for yo.) 
We denote by xo that value of x at  which (yea - x (  attains its mini- 
mum. I t  is easy to see that this value is unicluc. For if  
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we would have 

x', + .; a=-. 
2yo 

This fraction is irreducible. For if xo + x f o  = l p  and 2yo = lq (with 
1 > I), we would have, for 1 > 2, 

q < y @  a = &  q '  14a-pI=O. 

which contradicts the definition of yo; and for 1 = 2,  we would have 
q = yo and 

Iqa -p I=Iyoa-pI=W IY,O-~OI .  

which contradicts the definition of xo. 
Expanding the rational number a as a continued fraction, we thus 

obtain 
a=&,  

4n 
P,, = + xi. 

so that if u ,  > 2 or i f  u,, = 2 and ?t > 1, we have q,,~ < yo. But 

which contradicts the definition of yo. If n = 1 and a, = 2, we have 
a = a. + 3 and yo = 1, which is the one exceptional case. 

Thus, the values yo and xo are uniquely defined by the given condi- 
tions. I t  directly follows from this that xo/yo is a best approximation 
of the second kind for the number a, since the inequalities 

a x 
p a - a 1 4  Iyoa-xoI. J- ZS' b,<YO, Yo 

would obviously contradict the definitions of xo and yo. From Theo- 
rem 16, we therefore have 

If s = k,  the theorem is proved. But if s < k, we obtain 
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and from the definitions of the numbers p, = xo and q, = yo, we would 
have 

so that 

that is, 

which is impossible because of the rule by which the numbers qk are 
formed. This completes the proof of Theorem 17. 

Those properties of the apparatus of continued fractions that we 
have established in the present section were, historically, the original 
reason for the discovery and study of that apparatus. When Huygens 
set about constructing a model of the solar system by using toothed 
wheels, he was confronted with the problem of determining what num- 
bers of teeth for the wheels would give a ratio for two interconnected 
wheels (equal to the ratio of their periods of rotation) that would be 
as close as possible to the ratio a of the periods of revolution of the cor- 
responding planets. At the same time, the number of teeth obviously 
could not, for technical reasons, be too high. Thus, Huygens's problem 
was to find a rational number with numerator and denominator not 
exceeding a certain bound that would still be as close as possible to 
the given number a. (The number a might theoretically be irrational, 
but, in practice, it is assumed, in a given case, to be a rational fraction 
with very large numerator and denominator.) We have already seen 
that the theory of continued fractions provides the means of soping 
this problem. 

7 .  The order of approximation 
In the preceding section, we were concerned with evaluating the small- 
ness of the difference 1 a - (pk/qk) I in comparison with other differ- 
ences of the same type. Here, we shall make an absolute evaluation of 
this difference. Obviously, the only way of evaluating the smallness 
of 1 a - (p~./qk) I consists in comparing it with some decreasing func- 
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tion of qk. To this end, Theorem 9 of Chapter I leads us directly to the 
inequali ty3 

Therefore, the question must arise as to whether we can strengthen 
this inequality, that is, replace its right side with another function 
f ( q r )  of the denominator qk that, for all n 2 1, would satisfy the in- 
equality 1 

f (n) < ;?i 

I t  is easy to see that if we want this strengthened form of inequality 
(30) to be satisfied for arbitrary a at  all values of k, no significant 
strengthening in this direction is possible. More precisely, for any 
E > 0, we can always find a case for which 

1 - c  
l a - : I > T *  

To show this, we need only examine the number 

a= (0; n, 1, n]= n + l  
m i - 2 )  ' 

for which, 8 

and therefore, 

If we now choose n such that 

we have 

a If = pk/qk (when Theor. 9 is inapplicable because there is no qbd, inequality 
(30) becomes trivial. 
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Therefore, inequality (31) implies However, if we relax the requirement that the strengthened inequal- 
ity be satisfied for arbitrary a a t  all values of k (without exception), 
we can then obtain a number of interesting and important propositions, 
as we proceed to demonstrate. 

THEOREM 18. I f  a number a has a conzlergent of order k > 0, at least 
one of the following lwo inequalities must hold: 

so that d > b. Thus, the fraction a l b  is a best approximation of the 
second kind of the number a and Theorem 19 is proved. 

A further strengthening of Theorem 18 is the following, consider- 
ably more profound theorem. 

T~IEOREM 2 h 4  If a number a has a convergent of order k > 1, at least 
one oj  the following lhree inequalities m u d  hold: 

PROOF. Since a lies between pk--l/qk-l and pk/qk, we have 

(The inequality expresses the fact that the geometric mean of the 
quantities l/qi and l/qi-l is less than their arithmetic mean; equality 
would be possible only if qk = qk -1 ,  which in the present case is ruled 
out.) The assertion of the theorem follows immediately. 

This proposition is interesting because it has a converse (in a cer- 
tain sense). 

THEOREM 19. Every irreducible ralional fraction a /b  that satisfies the 
inequality 

PROOF. Let us define, for rd 2 1, 

LEMMA. If k 2 2, qk 5 4 5 ,  and fix-I 5 4 5 ,  /hen 

PROOF. Since 

i s  a convergent of the number a. 
PROOF. On the basis of Theorem 16, it is sufficient to show that the 

fraction a/b is a best approximation of the second kind of the number a. 
Suppose that 

and 

it follows that 
then, 

and, from the conditions of the lemma, and, consequently, 

4 Some simplification of the proof given here appears in the article by I. I. Zhogin, 
"Variant dokazatel'stva odnoi teoremy iz teorii tsepnykh drobei" ("A variation of 
the proof of a theorem in the theory of continued fractions"), Usjwkhi m u h t d i c h e -  
skikh nauk, 12, No. 3, 321-322 (1957). 

On the other hand, since c/d # a/b,  we have 
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so that 
1 (f5 - y 7 & ) ( f L  -) > 1. 1 

'Pk 

or, since pk is a rational number, 

Then, since pk > 0, we obtain 

and, consequently, 

which proves the lemma. 
Let us now suppose that, in contradiction to our assertion, 

From formula (16) of Chapter I, we have 

and, consequently, 

+ 5 (n = k. k - 1. k - 2). 

We conclude, on the basis of our lemma, that 

and hence. because of (32). 
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which is impossible. This contradiction completes the proof of Theo- 
rem 20. 

Theorems 18 and 20 give the obvious impression of the beginning 
of a series of propositions that will admit yet further extension. How- 
ever, this impression is erroneous. Consider the number 

a =  [ l ;  1, 1 ,  . . . I .  

Assuming, a< usual, that a = 1 + (l/rl), we obviously have rl  = a, 
so that 

and, consequently , 
1 +If3 a=- 

2 * 

Since, obviously, r,, = a for arbitrary n, we have 

and, consequently, 

But from Theorem 6 of Chapter I, we have 

Thus, . 
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This shows that, no matter what the number c < (1/45)  may be, for 
suficiently large k, we will obtain 

Thus, the constant l/dj in Theorem 20 cannot be replaced by any 
smaller constant if we wish the corresponding inequality to be satisfied 
for an infinite set of values of k with arbitrary a.  For every smaller con- 
stant, there exists an a [namely, a = h(d5 + I)] that can satisfy the 
required inequality for no more than a finite number of values of k. 
Thus, the chain of propositions that begins with Theorems 18 and 20 
is broken after the latter theorem, and admits no further continuation. 

8. General approximation theorems 
Up to now, we have been primarily interested in approximations 
given by convergcnts and have clarified a number of fundamental 
questions associated with this problem. Since wc have seen that the 
convergents are hcst approximations, we may assume that the ob- 
tained results will allow us to study, in full measure, the rules that 
govern the approximation of irrational numbers by rational fractions, 
independently of any particular representing apparatus. We now turn 
to problems of this type. I t  is, of course, impossible (within the frame- 
work of the present elementary monograph) to give any sort of com- 
plete exposition of the fundamentals of the corresponding theory, part- 
ly because of lack of space, but primarily because such an exposition 
would have only an indirect bearing on our problem. We shall confine 
ourselves to presenting a number of elementary propositions, which will 
illustrate the application of continued fractions to the study of the 
arithmetic nature of irrational nun1 hers. 

The first problem that naturally arises in connection with the results 
of the preceding section may be formulated as follows: For what con- 
stants c does the inequality 

have an infinite set of solutions in integers p and q, q > 0, for arbi- 
trary real a? The final result of the preceding section leads us to the 
following theorem. 

THEOREM 21. Inequality (33) has an  injinite set of solutions i n  in-  
tegers p and q ( q  > 0) for arbitrary real a if c > (1/45).  However, if 
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c < (1/45) ,  inequality (33) will, for suifably chosen a, hazle only a 
finite number of such solufions. 

The first assertion is an immediate consequence of Theorem 20. (In 
the case in which a is a rational number a /b  and, therefore, has only a 
finite number of convergents, the first assertion of Theorem 21 can be 
proved in a trivial manner by setting q = nb and P = nu,  for n = 1, 
2,3, - - * ) .  Suppose, then, that c < ( 1 / 4  5). As in section 7, let us set 

If two integers p and q (q  > 0) satisfy inequality (33), Theorem 19 
tells us that p/q is a convergent of the number a. But we saw a t  the 
end of section 7 that only a finite number of these convergents satisfy 
inequality (33) under our hypothesis that c < (1/45).  Th' 1s proves 
our assertion. 

Thus, in general (that is, if we consider all possible real numbers a), 
the order of approximation characterized by the quantity 1/(d5q2) 
cannot be improved. (The term "order of approximation" refers to that 
magnitude of error within which a suitable estimate can always be 
f ~ u n d . ) ~  This does not mean that there are no individual irrational 
numbers for which approximations of much higher order are possible. 
On the contrary, the possibilities in this direction are boundless-a fact 
that is most easily shown by the apparatus of continued fractions. 

THEOREM 22. For any positive function q(q) with natural argument q, 
there i s  an  irralional number a such thal the inequality 

has a n  i n j n i f e  number oj  solufions i n  integers p and q (q > 0). 
PROOF. Let us construct an infinite coptinued fraction a by choos- 

ing its elements successively in such a way that they will satisfy the 
inequalities . 

This, of course, can be done in an infinite number of ways. Here, a0 can 
be chosen arbitrarily. Then, for any k >_ 0, 

which proves the theorem. 
b Translation editor's note. 
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We now note that, in the most general case, the inequalities 

or, equivalently, 

imply 

from which it is clear that, for given ao, a l ,  * * .  , ak, the greater the 
subsequent element ar+l is, the more closely the fraction pl/qk will 
approximate the number a. And since the convergents are, in all cases, 
best approximations, we arrive at the conclusion that those irrational 
numbers whose elements include large numbers admit good approxima- 
tion by rational fractions. This qualitative remark is expressed quan- 
titatively in inequality (34). In particular, irrational numbers with 
bounded elements admit the worst approximations. Thus, it becomes 
clear why we have repeatedly chosen the number 

when we wished to exhibit an irrational number that did not admit 
approximations of higher than a fixed order. Of all irrational numbers, 
this clearly has the smallest possible elements (excluding ao, which 
plays no role here) and hence is the most poorly approximated by ra- 
tional fractions. 

Those approximating properties that are peculiar to numbers with 
bounded elements are completely expressed in the following proposi- 
tion, which, after what has already been said, is almost obvious. 

THEOREM 23. For every irrational number a wi th  bounded elemenls, 
and for suficiently small c ,  the inequality 

has no  solution i n  integers p and y ( y  > 0). O n  the other hand,  jor every 
number a with a n  unbounded sequence of elements and arbitrary c > 0, 
inequality (33) has a n  i n j n i t e  set o j  such sulutions. 
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In other words, irrational numbers with bounded elements admit 
an order of approximation no higher than l/q2, while every irrational 
number with unbounded elements admits a higher order of approxima- 
tion. 

PROOF. If the set of elements of the continued fraction representing 
a is not bounded above, then for arbitrary positive c there is an infinite 
set of integers k such that 

and, consequently, on the basis of the second of the inequalities in (34), 
there is an infinite set of integers k such that 

which proves the second assertion of the theorem. If there exists an 
M > 0 such that 

a, < M (k= 1, 2, ...), 

then, on the basis of the first of the inequalities in (34), we have, for 
arbitrary k 2 0, 

Now let p and q be arbitrary integers (q > O) ,  and let k be deter- 
mined by the inequalities 

Then, since all convergents are best approximations of the first kind, 
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Thus, if we choose 

inequality (33) cannot be satisfied for any pair of integers P and q 
(q > 0). This proves the first assertion of the theorem. 

Up to this point, we have always evaluated the closeness of an ap- 
proximation in terms of the smallness of the difference a - (p/q); 
however, we might have considered instead the difference qa - P (as 
in sec. 6), making the appropriate changes in the formulation of all 
the theorems. This simple observation leads directly to a certain new . 
and extremely important aspect of the problem that we are studying. 

The simplest homogeneous linear equation with two unknowns x 
and y, namely, 

where a is a given irrational number, obviously cannot be exactly 
solved in whole numbers (except, of course, in the trivial case of 
x = y = 0). However, we may pose thc problem of obtaining an ap- 
proximate solution, that is, of choosing integers x and y for which the 
difference ax - y is sufficiently small (that is, less than a preassigned 
amount). Obviously, all the preceding theorems of this section can 
be interpreted as confirmation of the rules governing this kind of ap- 
proximate solution to equation (35)  in whole numbers. Thus, for ex- 
ample, Theorem 21 shows that there always exists an infinite set of 
pairs of integers x and y (x > 0), such that 

for any positive C greater than or equal to 1 / 4 5 .  
With this approach, it is natural to pass from the homogeneous equa- 

tion (35) to the non-homogeneous equation 

(where /3 is a given real number) and to investigate the existence and 
nature of its approximate solutions in integers x and y (in other words, 
to investigate the principles involved in attempting to make the dif- 
ference ax - y - /3 as small as possible by a suitable choice of integers 
x and y). This problem was first posed by the great Russian mathe- 
matician P. L. Chebyshev, who obtained the first basic results cow 
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nected with it, and has been the subject of continued intensive study, 
especially by the Soviet arithmetic school. 

The first basic feature distinguishing the non-homogeneous case 
from the homogeneous one is that it is possible to make the quantity 

1 ax - y - 81 arbitrarily small for arbitrary /3 by a suitable choice 
of x and y only if the number a is irrational (whereas, in the homogene- 
ous case, the quantity 1 ax - yl can be made arbitrarily small for 
any a).  In  fact, if a = a/b, where b > 0 and a are integers, then, by 
setting /3 = 1/26? we obtain, for arbitrary integers x and y, 

since 12(ax - by) - 1 I , being an odd integer, is a t  least equal to 
unity. 

Thus, in all that follows, we shall assume a to be irrational. With 
this understanding, we shall now show that not only is it also possible 
to make the quantity 1 ax - y - /3/ arbitrarily small, but the analogy 
with the homogeneous case can be extended considerably further. 

THEOREM 24 (Chebyshev). For an arbitrary irrational number a and 
an arbitrary reul number P, the inequality ( ax - y - 0 1 < 3 / x  has an 
infinite set of solutions in inlegers x and y (where x > O).' 

PRELIMINARY REMARK. Obviously, this result is completely analo- 
gous to the corresponding problem for homogeneous equations, ex- 
pressed in Theorem 21. The difference consists only in the fact that 
here, instead of 1 /45 ,  we have 3. The order of the approximation is 
the same as before. We note also that the number 3 is not the best pos- 
sible and that the exact value of the greatest lower bound of the set of 
numbers' that would verify Theorem 24 is considerably less than 3. 

PROOF. Let p /q  be an arbitrary convergent of a. We then have 

also, for any real p, we can find a number t such that 

8 A simple proof of a somewhat stronger theorem is found in Khinchin's article, 
"Printsip Dirikhle v teorii diofantovykh priblizhenii" ("Dirichlet's principle in the 
theory of Diophantine approximations"), Uspckhi tnakmdicheckikh nauk, 3, No. 3, 
17-18 (1948). Further refinements are contained in Khinchin's article, "0 zadache 
Chebysheva" ("On a problem of Chebyshev"), Izvestiya akad. n a ~ k  SSSR, ser. 
mukm., 10, 281-294 (1946). (B. G.) 
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so that 

Since p and q have no common divisors other than + 1, there exists 
a pair of integers x and y such that 

For if r / s  is the convergent immediately preceding p/q, 

and for an arbitrary integer k, 

p ( k g  - € s t )  - q ( k p  - d)  = f; 

but k can be chosen so that 

Then, on the basis of equations (38) and (39), 

and since 

1 

we have 
9 3 3  

l a x - y - P I < - + - = - .  4% 4% x 

Finally, since q can be chosen arbitrary large and since x 2 q/2, i t  
follows that x can be arbitrarily large. This proves the theorem. 

But the problem of an approximate solution to equation (37) in 
whole numbers can be put in a different, and somewhat more natural, 
form. Since the crux of the problem is to make the quantity 1 ax - 
y - fi  1 as small as possible with as large integral values of x and y as 
possible, it is most natural to state the problem in the following man- 
ner. We know (from Theor. 24) that, for any positive number n (no 

\ 
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matter how large), any irrational number a, and any real 8, we can 
find integers x > 0 and y satisfying the inequality 

However, Theorem 24 does not generally give us any information as 
to the limits within which we should seek these numbers so as to attain 
the required pccuracy, characterized by the quantity l / n .  This might 
be achieved, for example, if we could exhibit some number N, depend- 
ent on n, but independent of a and 8, such that inequality (40) would 
always be satisfied under the additional condition that 

14 ,<N. 
This new statement of the problem is obviously quite different from 

the original one. Whereas formerly (as in Theor. 24) the accuracy of 
approximation was determined by the value of x, we now wish to fix 
this accuracy in advance and see how large a value of x we should 
choose to attain this accuracy. The solution to the problem is signifi- 
cantly altered by this difference in its statement. Specifically, we obtain 
quite different results in the homogeneous and non-homogeneous cases. 

In the case of a honlogeneous equation (@ = O), the stated problem 
has a very simple solution. 

THEOREM 25. For all real numbers n 2 1 and a, there are integers 
x and y s a h l j i n g  the inequalities 

1 
O < x , ( n .  l a x - y I <  ;;. 

PROOF. If a is a rational number, u/b ,  such that O < b 5 n, the 
conclusion is inmediate for x = b and y = a .  If a either is irrational 
or has a denominator exceeding n, we define k by the relationship 

(where p J q h  denotes the kth-order convergent of a) and obtain 

which proves the theorem. 
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Now, we naturally ask whether we may obtain the same order of 
approximation in the case of the non-homogeneous equation (37). In  
other words, may we assert that, for any irrational number a, a positive 
number C can be found such that, for any n 2 1 and 8, there exigt 
integers x and y satisfying the inequalities 

(Clearly, we are now asking even less than for the homogeneous case, 
since we are allowing C to depend on a ,  whereas in the homogeneous 
case, C = 1 was an absolute constant .) I t  is easy to give certain a priori 
arguments against the possibility of such an assumption. First, for ra- 
tion* a,  it is clearly untrue, since, as we have seen, the quantity 
lax - y - 81 cannot in general (that is, with arbitrary 8) be made 
arbitrarily small. This leads us to expect that if a is irrational (but is 
approximated extremely closely by rational fractions), the quantity 

1 ax - y - @I, even though it can (on the basis of Theor. 24) be made 
arbitrarily small, requires comparatively large values of x and y to 
accomplish this with a suitably chosen value of 8. These considerations 
also lead us to suppose that the more poorly the number a is approxi- 
mated by rational fractions (that is, the more difficult it is to make the 
quantity ax - y approach zero), the easier it will be to have the dif- 
ference ax - y approach an arbitrary real number 8. As we know, this, 
in turn, requires that the elements of the number a not increase too 
fast. All these preliminary considerations are expressed precisely in the 
following theorem. 

THEOREM 26. For the existence of a positive number C with the prop- 
erty that, for arbitrary real numbers n >_ 1 and 8, two integers x and y 
(x > 0) exist satisfying the inequalities 

it  i s  necessary and su&ient that the irrational number a be represented 
by a continued fraction with bounded elements. 
PROOF. Suppose that a = [aa; al ,  a2, * * * I ,  that a ,  < M (for i = 

1, 2, o o  .), that m >_ 1, and that B is an arbitrary real number. De- 
noting by pk/qx the convergents of the number a, we can determine 
the subscript k from the inequalities 

Q R  S m < q k t l ;  
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then, 

We now choose an integer t such that 

Finally, as in the proof of Theorem 24, we find a pair of integers x and y 
satisfying the relationships 

XP, - Y q k  = t* 0 < x g q , .  (43) 
It follows from (41), (42), and (43) that 

Up to now, the number m 2 1 has been completely arbitrary. If 
we now set m = )(M + 3 ) n  for given n 2 1, we shall obviously have 
m > 1. Consequently, from what was stated above, if we choose the 
numbers x and y as indicated, we have 

which proves the first part of the theorem. 
To prove the second part, let us suppose that the set of elements at 

of the number a is unbounded above. Theorem 23 than indicates that, 
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in this case, for any positive number c there arc integers q > 0 and p 
satisfying the inequality 

so that 

We now set n = q / r  and fl  = 1/2q. Then, for arbitrary integers x and y 
(with 0 < x < Cn), we obtain 

But no matter how large C may be, for sufficiently small t, we shall 
have [(I - 2Ce)/2e] > 1, and, consequently, for arbitrary integers x 
and y (with 0 < x 5 Cn), we obtain 

which proves the first part of the theorem. 
Let us review the results that we have obtained. In investigating 

the approximate solutions to equation (37) in whole numbers, we must 
examine as a "normal" case the one in which the accuracy character- 
ized by the quantity l /n  can be attained for arbitrary n 2 1 a t  some 
x < Cn, where C is a constant (possibly depending on a). A homogene- 
ous equation (obtained for /3 = 0) always has a normal solution (Theor. 
25). Theorem 26 shows that the general (non-homogeneous) equation 
has a normal solution if, and only if, the corresponding homogeneous 
equation has no "supernormal" solution (that is, if it is impossible to 
satisfy the homogeneous equation with integers x > 0 and y such that 
x < en for arbitrary r > 0 and properly chosen n, with an accuracy 
of l/n). From this point of view, the results of our investigation can 
be regarded as a variation of the general law concerning the solution 
of linear equations (algebraic, integral, etc.): I n  the general case, a non- 
homogeneous equation can be solved LLnormally" i /  the corresponding homo- 
geneous equution has no "supernormal" solution. 

We note also that in Theorem 26 we required that C be independent 
of 6. The same result would hold if we allowed C to be a function of 6, 
but the proof (second part) would be somewhat more complicated. 
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9. The approximation of algebraic irrational numbers 
and Liouville's transcendental numbers 

Supposc that 

is a polynomial of degree 12 with integral coefficients ao, ul, - , a,. 
Then, a root; a,  of this polynomial is said to be ulgebraic. Since every 
rational number a = a/b can be defined as the root of the first-degree 
equation bx - a = 0, the concept of an algebraic number is clearly a 
natural generalization of the concept of a rational number. If a given 
algebraic number satisfies an equation f(x) = 0 of degree n, and does 
not satisfy any equation of lower degree (with integral coefficients), 
it is called an algebraic number of degree n. In particular, rational 
numbers can be defined as first-degree algebraic numbers. The num- 
ber 4 2 ,  being a rcmt of the polynonlial .v2 - 2, is a second-degree alge- 
braic number, or, as we say, a quadratic irrational. Cubic, fourth-de- 
gree, and higher irrationals are defined analogously. All non-algebraic 
numbers are said to be transcendental. Examples of transcendental 
numbers are e and T. 13ecausc of the great role that algebraic numbers 
play in contemporary number theory, many special studies have been 
devoted to the question of their properties with regard to their approxi- 
mation by rational fractions. The first noteworthy result in this direc- 
tion was the following theorem, known as Liouville's theorem. 

THEOREM 27. For every real irrational algebraic number a of degree n, 
there exists a positive ltumber C such tlrat, for arbitrary integers p and q 

((1 > 01, 

PKOOF. Suppose that a is a root of the polynomial (44). From alge- 
bra, we may write 

f ( 4  -- (X - a) f (XI, (45) 

wherejl(x) is a polynomial of degree n - 1. Here, fl(a) # 0. To show 
this, suppose that fl(a) = 0. Then, the polynomial fl(x) could be 
divided (without a remainder) by x - a and, hence, the polynomial 
f(x) could be divided by (x - a)2. But, then, the derivative ff(x) could 
be divided by x - a ;  that is, we would have f f (a )  = 0, which is im- 
possible since ff(x) is a polynomial of degree n - 1 with integral co- 



46 CONTINUED FRACTIONS 

efficients and a is an algebraic numbcr of degrcc r l .  Hence, fl(a) # 0, 
and, consequently, we can find a positive number 6 such that 

f&) * 0 ( a - 6 4  x < a + 6 ) .  

Suppose that p and q (q > O), are an arbitrary pair of integers. If 
( a - (p/q) / 5 6, then f l(p/q) # 0, and, by substituting x = pjq in 
identity (19 ,  we obtain 

The numerator of this fraction is an integer. I t  is also non-zero, be- 
cause otherwise we would have a = ply, whereas a is by hypothesis 
irrational. Consequently, this numerator is at  least equal to unity in 
absolute value. We denote by M the least upper bound of the function 
f l ( x )  in the interval (a - 6, a + 6). From the last inequality, we thus 
obtain 

In the event that 

it follows that 

and if we now denote by C any positive number less than 6 and 1/M, 
we obtain, in both cases (that is, for arbitrary q > 0 and p), 

which completes the proof of. Theorem 27. 
Liouville's theorem shows that algebraic numbers do not admit ra- 

tional-fraction approximations of greater than a certain order of ac- 
curacy (this depending basically on the degree of the algebraic number 
in question). The main historical importance of this theorem consisted 
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in the fact that it made possible the proof of the existence of transcen- 
dental numbers, and enabled one to give specific examples of such 
numbers. As we have seen, to do this, it is sufficient to exhibit an irra- 
tional number for which rational fractions give extremely close approxi- 
mations, and theorem 22 shows that the possibilities for this are un- 
limited. 

Specifically, Theorem 27 shows that if for arbitrary C > 0 and arbi- 
trary naturak n there exist integers p and q(q > 0), such that 

then the number a is transcendental. Using the apparatus of continued 
fractions, it is very easy to exhibit as many such numbers as we desire. 
All that is necessary is to choose elements ao, al, , ak, form the 
convergent pk/~k, and take 

since then 

As a result of the above, inequality (16) is obviously satisfied for suffi- 
ciently large values of k, no matter what C > 0 and natural n may be. 

10. Quadratic irrational numbers and periodic 
continued fractions 

Theorem 27 shows that, for any quadratic irrational number a, there 
exists a positive number C, depending on a,  such that the inequality 

has no solution in integers p and q(q > 0). From this and from Theo- 
rem 23, it follows that the elements of every quadratic irrational num- 
ber are bounded. Long before Liouville, however, Lagrange had dis- 
covered a much more significant property of the continued fractions 
representing these irrationals (one that is even more characteristic of 
them). I t  turns out that a sequence of quadratic irrational elements is 
always a periodic sequence and, conversely, that every periodic con- 
tinued fraction represents some quadratic irrational number. The pres- 
ent section is devoted to a proof of this assertion. 
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Let us agree to call the continued fraction 

a=lag; a l ,  a,, . . . 
periodic if there exist positive integers ko and /z such that, for arbi- 
trary k > KO, 

In analogy with the procedure for decimal fractions, we shall indicate 
such a periodic continued fraction as follows: 

THEOREM 28. Ezlery periodic continued fraction represents a quadratic 
irrational number and every quadratic irrational number i s  represented 
by a periodic continued fraction. 

PROOF. The first assertion can be proved in a few words. Obviously, 
the remainders of the periodic continued fraction (47) satisfy the rela- 
tionship 

f k + h  = f k  (k  >, k"). 

Therefore, on the basis of formula (16) of Chapter I ,  we have, for 
k > ko, 

so that 

p k - I r k  + ~ k - 2  = P k + h - l r k  + ~ k  i h - 2  

k i r k  + 2  ~ k + h - l ~ k  + q k + h - 2  ' 

Thus, the number r k  satisfies a quadratic equation with integral co- 
efficients and, consequently, is a quadratic irrational number. But, in 
this case, the first inequality of (48) shows that a too is a quadratic 
irrational number. 

The converse is somewhat more complicated. Suppose that the num- 
ber a satisfies the quadratic equation 

with integral coefficients. If we write a in terms of its remainders of 
order n 
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(again using eq. [16] of Chap. I), we see that r ,  satisfies the equation 

(50) Anr:, + Bnrn + Cn = 0, 

where .lr,, HI,, and C, are integers defined by 

An = a ~ : - ~  + ~ P ~ - ~ Q ~ - ~ + C ~ ~ - I ~  

B n  -- 2 p ~ n  - l ~ n  - 2 f  b ( ~ n  - l q n -  2 f P n  - 2 q n  - 3+2c9n - 14n - 2 ,  

Cn = ' p i - ,  + b P n e 2 q n _ ,  f ' p i - 2 ,  

from which, in particular, it follows that 

Cn = An+ 

With these formulas, it is easy to verify directly that 

that is, that the discriminant of (50) is the same for all n and is equal 
to the discriminant of (49). Furthermore, since 

it follows that 

therefore, the first formula of (51) gives us 

from which, on the basis of (49), we have 

and, 'on the basis of (S), 

ICnI = I < 2 laal+lal+Ibl*  
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Thus, the coefficients A ,  and C, in (50) are bounded in absolute 
value and hence may assume only a finite number of distinct values as 
n varies. I t  then follows on the basis of (53)  that H, may take only a 
finite number of distinct values. Thus, as ~c increases from 1 to a, we 
can encounter only a finite number of distinct equations in (50). But, 
in any case, r ,  can take only a finite number of distinct values, and 
therefore, for properly chosen k and h,  

r k  = fk+h'  

This shows that the continued fraction representing a is periodic and 
thus proves the second assertion of the theorem. 

No proofs analogous to this are known for continued fractions repre- 
senting algebraic irrational numbers of higher degrees. In general, all 
that is known concerning the approximation of algebraic numbers of 
higher degrees by rational fractions amounts to some elementary corol- 
laries to Liouville's theorem, and certain newer propositions strength- 
ening it. I t  is interesting to note that we do not, at the present time, 
know the continued-fraction expansion of a single algebraic number of 
degree higher than 2. We do not know, for exanlplc, whether the sets 
of elements in such expansions are bounded or unl~ounded. In general, 
questions connected with the con tinued-frac tion expansion of algebraic 
numbers of higher degree than the second are extremely difficult and 
have hardly been studied. 

Chapter 111 

CONTINUED FRACTIONS 

11. Introduction 
In the course of the preceding chapter, we saw that real numbers can 
be quite different in their arithmetic properties. Besides the basic di- 
visions of the real numbers into rational and irrational or algebraic 
and transcendental numbers, there are several considerably finer sub- 
divisions of these numbers based on a whole series of criteria charac- 
terizing their arithmetic nature (most importantly, criteria involving 
the approximation by rational fractions that these numbers admit). 
In all these cases, we have, up to now, been content with simple proofs 
that numbers having certain arithmetic properties actually do exist. 
Thus, we know that numbers exist admitting approximation by ra- 
tional fractions of the form p / q  with order of laccuracy not exceeding 
l /q2 (for example, all quadratic irrational numbers); but we also know 
that there exist numbers admitting approximation of much higher 
order (Theor. 22, Chap. 11). The following question naturally arises : 
which of these two opposite properties should we consider the more 
"general," that is, which of these two types of real numbers do we "en- 
counter more often"? 

If we wish to give a precise formulation of the question just posed, 
we must remember that each time we refer to some property or other 
of the real numbers (for example, irrationality, transcendentality, pos- 
session of a bounded sequence of elements, etc.), the set of real num- 
bers is partitioned with respect to that property into two sets: (1) the 
set of numbers possessing that property, and (2) the set of numbers not 
possessing it. The question is then clearly reduced to a comparative 
study of these two sets, with the purpose of determining which of them 
contains more numbers. However, sets of real numbers can be com- 
pared with each other from various points of view, and in terms of 
various characteristics. We can pose the question of their cardinality, 
of their measure, or of a number of other gauges. As regards both meth- 
ods and results, the study of the measure of sets of numbers defined by 

51 
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a given property of their elements has proven the most interesting. 
This study, which we shall call the measure urilhmelic of Ihe conti~zuum, 
has undergone considerable development in recent years, and has led 
to a large number of simple and interesting principles. As with every 
study of the arithmetic nature of irrational numbers, the apparatus of 
continued fractions is the most natural and the best investigating in- 
strument. However, to make this apparatus an instrument for measure 
arithmetic (that is, to apply it to the study of the measure of sets whose 
members are defined by some arithmetic property), we must first sub- 
ject the apparatus itself to a detailed analysis from all aspects. We 
must, in other words, learn to determine the measure of numbers 
whose expansions in continued fractions possess some previously stated 
property. Questions of this kind can be quite varied: we may inquire 
about the measure of the set of numbers for which a4 = 2, or for which 
qlo is less than 1,000, or which have a bounded sequence of elements, 
or which have no even elements, and so on. 'The methods used in solving 
problems such as these constitute the measure lheory (4 continued frac- 
tions. I t  is to the fundamentals and the elementary applications of this 
theory that the 1)rcsent c.ha~)icr ib clevolc~l. 

Since the addition of a n  integer to a given real nu~nber does not 
change the fundamental properties of that real number, we shall hence- 
forth confine ourselves to an examination of the real numbers between 
zero and one; that is, we shall always assume that uo  = 0. Such a re- 
striction to a finite interval is necessary in measure theory if we do not 
wish the measure of a set, in the general case, to be infinite. We are 
assuming that the reader is familiar with the hasic propositions of 
measure theory.' 

12. The elements as functions of the number 
represented 

Every real number a has a unique e s p u m i o ~ ~  as a continued fraction 

a  = [a,; a , ,  a*, . . . 1; 

each element a ,  is therefore uniquely defined by the number a ;  that is, 
it is a single-valued function of a:  

a,  = a,  (a) .  

1 The material contained in any text on functions of a real variable will be more 
than sufficient for understanding this chapter. 
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To develop the measure theory of continued fractions, we must first 
study the properties of this function and obtain a general picture of its 
behavior. The present section is devoted to this problem. 

As we noted in section 11, we are henceforth assuming that a0 = 0. 
For simplicity in notation, we shall always write 

instead of . 
a = [ao; a , ,  a,, . . . I .  

Thus, 

Let us begin by examining the first element a1 as a function of a. 
Since 

it is obvious that u l  = [l/a],  that is, ul is the greatest integer not ex- 
ceeding l/a.  Thus, 

a, = 3, 

In general, 

1 . 1 
for 1 , < ; < 2 ;  l . e . , T < a Q *  

1 I 1 
for 2 4 ; < 3 ;  i.e., - i ~ - < a , < ~ ,  

1 1 1 for 3 ,< < 4; i.e., < a 3 . etc. 

1 I 1 for k , < ; < k + l ;  i.e., m < a < x -  

The function al = al(a) thus has a discontinuity a t  all those values of a 
for which l / a  is an integer, and it increases without bound as a ap- 
proaches 0. Figure 1  gives a graphical representation. We note that al 
is constant throughout each of the intervals 
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We shall call these intervals irderwls u j  tlrejirsl rauk. We note also that 

j ., dn = + ao. 
0 

since this integral is obviously equivalent to the divergent series 

Let us now examine the function ap(a), first considering some fixed 
interval of the first rank: 

In this interval, a1 = k everywhere and, consequently, 
1 
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where 1 5 rp < a and a2 = [r2]. As r2 increases from 1 to m ,  in- 
creases from l/(k + 1) to 1/k, thus taking all values in the given in- 
terval of the first rank. I t  is then obvious that 

a, = 1 ,  for 1 ,< r ,  < 2; i.e., - 1 
,<a<- - - -p  

k + l  k + i i  

. 1 1 
1 4 " < 7 '  a, = 2 ,  for 2 ,< r ,  < 3; i.e., - 

k + l  +.3 
1 1 

1 < a <  1 ' a, = 3 ,  for 3 < r ,  < 4 ;  i.e., - - 
k + ~  k + a  

and, in general, 

Thus, in this hxed firs t-rank interval, the graphical represen tat ion of 
the function a2(a) has the form shown in Figure 2. 
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The function az(a) is constant in each of the intervals 

which we shall call intervals of the second rank. Every interval of the 
first rank can consequently be partitioned into a countable set of in- 
tervals of the second rank, going from left to right. (We recall that in- 
tervals of the first rank form a sequence going from right to left.) The 
set of points at  which a l  = k is an interval of the first rank. The set of 
points a t  which a2 = 1 is a countable set of intervals of the second rank 
(one in each of the intervals of the first rank). Each interval of the 
first rank is defined by a condition of the form a1 = k, and each in- 
terval of the second rank by conditions of the form a1 = k, a2 = 1. 

Suppose that we have defined all intervals of rank n and that we 
are investigating the set of functions ul(a), uz(a), , a,&(a). Each 
system of values 

a , = k , ,  a 2 = k z ,  . . ., a , = k ,  (54) 

defines some interval J ,  of rank n. 'l'o invcstigaic the Iwhavior of the 
function a,+l(a) in the interval J,', we note that an arbitrary num- 
ber a of this interval may be represented in the form 

where rn+l takes all possible values from 1 to a .  Conversely, for arbi- 
trary Y , + ~  (where 1 < I,+I < a), the expression (55) gives us the num- 
ber a for which conditions (54) are satisfied and which consequently 
belongs to the interval J,. Since an+l = [r,+J, we see that in each in- 
terval of rank n, the function an+l(a) assumes all the integral values 
from 1 to a. TO draw a more exact picture, let us agree to denote the 
convergents of the number a, as usual, by pk/qx Then, 

where I.+I increases from 1 to as a runs through the interval J,. 
The numbers p,, g,, pn-1, 9,-1 remain constant, since they are com- 
pletely determined by the numbers a ~ ,  u?,  - * * , a,, each of which has 
the same value for all points of the interval J.. In particular, by setting 
rn+l = 1 and then letting r n + ~  -+ a ,  we obtain as end points of the 
interval J, the points 
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P n  + P n -  I Pn . and - 
4 n  + 4 n - I  4 n  ' 

and since 

a is a monotopic function of rn+l in the interval (1, ). Conversely, 
rn+l-and hence,  is a n~onotonic function of a in the interval 

thus, as a runs through the interval J,, the function ~ , + ~ ( a )  takes, in 
succession, the values 1, 2, 3, , partitioning the interval J ,  into 
a countable set of intervals of rank n + 1. This sequence is taken from 
right to left for even rz and from left to right for odd tz. 

Thus, the function un(a), a t  least qualitatively, is completely de- 
fined. Let us agree to call the interval (0, 1) the (unique) interval of 
rank zero, and let us cover i t  with a net of finer intervals, placing in 
every alrcwly cousiructccl interval of rank t~ a sequence of intervals 
of rank rt + 1. This sccluence is taken from right to left if n is even 
and from left to right if n is odd. The function U,+~(U) (for n = 0, 1, 2, 

* )  is constant in each of these intervals of rank n + 1. This func- 
tion is monotonic and takes all integral values from 1 to a in each 
interval of rank H. To each system of values 

there corresponds a uniquely defined interval of rank n, and vice versa. 
The more general system of values 

an, = k t ,  a,, = k2.  . . ., ams=k ,  

determines, generally speaking, a countable set of intervals. 
The first question posed by the measure theory of continued frac- 

tions naturally consists in determining the measure of the set of those 
points of the interval (0, 1) for which a, = k. We already know that 
this set is a union of disjoint intervals. I t  is then a question of evaluat- 
ing the sum of these intervals. A first approximation to the solution of 
this problem is obtained quite easily. 

From here on, let us agree to denote by 
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the set of points of the interval (0, 1) fur which the following conditions 
are satisfied: 

a n ,  = k , ,  an, = k,, . . . , ans = k,; 

here, of course, all the n, and k i  are natural numbers and the n; are 
all different from each other. We already know that such a set is al- 
ways a union of intervals. In particular, the set 

2, ..., n 
E Pal . . . , k n  

is, as we know, an interval of rank n, characterized by the relationships 

a1 = kr ( i = l ,  2,  . . . ,  n). 
Obviously, we always have 

Finally, let us agree to denote by %RE the measure of the set E. Let 
us consider an arbitrary interval 

of rank n containing the interval 

of rank n + 1. We already know that the end points of the interval J, 
are the points 

P n  - 
Qn 

and 
P n  + ~ n -  I 

q n - l - q n - I  ' 
where p k / q k  denotes the convergent of order k of the continued fraction 

[kip k2v 1 knl .  
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On the other hand, for all points of the interval Jn+l(8), we have 

Thus, among all the points 

of the interval J,, those for which s < r,+l < s + 1 belong to the 
interval J,+&#). Hence, it follows, in particular, that the end points 
of the interval J,+l(") will be the points 

Therefore, 

and, consequently, 

Here, the second factor on the right side is obviously always less than 
2 and greater than +. (The last assertion results from the facts that 
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'I'herefore, we obtain 

This shows that, givcn an arbitrary interval of rank n, the interval 
of rank ,z + 1 characterized by the value u,+~ = s  occupies a part of 
the given interval of the order of l / s 2 .  'L'he fact that the bounds given 
by the inequalities in (57) aie completely independent not only of the 
numbers kl, k2, , k, but also of the rank 12 (and are determined 
exclusively by the number s )  is extremely important. If we rewrite 
these inequalities in the form 

sum over all intervals J ,  of rank n (or, equivalently, over kl, k2, , 
k ,  from 1 to 03 ), and, finally, note that 

we obtain 

i 
This provides a first approximation to the solution to the problem 
being considered. We see that the measure of the set of points a t  which 
some definite elenlent has a given value s always lies between 1/3s2 
and 2/s2 (and consequently, is a quantity of the order l / s 2 ) .  

13. Measure-theoretic evaluation of the increase 
in the elements 

We now have the necessary tools for solving problems involving the 
measure of sets containing an infinite number of elements. As a first 
example of such a problem, we shall prove the following simple theo- 
rem. 

THEOREM 29. The set of all numbers i n  the i~zterzd (0, 1) with bounded 
elements i s  of measure zero. 

PROOF. We denote by EM the set of numbers in the interval (0, 1) 
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all of whose elements are less than M. Let J ,  be any interval of rank n 
whose points satisfy the conditions 

a , < M  ( 1 = 1 , 2  , . . . ,  n). (58) 

The points of the interval J ,  that satisfy the additional condition 
= k form an interval of rank n + 1. We denote this interval by 

J,,+Jk). From the first of the inequalities in (57), 

so that 

and since 

it follows that 

where 
1 .  '= 1-3(~+1,)' 

here, obviously, T < 1 if M > 0. 
If we denote by E$) the set of numbers of the interval (0, 1) char- 

acterized by conditions (58), we see from inequality (59) that the meas- 
ure of that portion of the set EZ+~) contained in some interval J ,  of 
rank n is less than that of r%RJ,. Since, obviously, an interval gf rank n 
that does not belong to the set E!$) (that is, one that does not satisfy 
the conditions in eq. [58]) cannot contain any point of the set E&+l), if 
we sum inequality (59) over all intervals of rank n in the set E$), we 
obtain 

9 t ~ $ + l '  < T F D I E ~ ) .  (60) 
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Successive application of this inequality gives us 

since T < 1. But the set E,M that we have defined above is obviously 
contained in each of the sets E$'. Consequently, 

Now setting 

we obtain 

ljut every number with bounded elements obviously belongs to the set 
E.11 for sufficiently large M and, hence, belongs to the set E, which 
proves the theorem. 

We know (Theor. 23, Chap. 11) that numbers with bounded ele- 
ments are those numbers a that do not admit an approximation by 
rational fractions better than in accordance with the law 

(We note that among these numbers are all quadratic irrationals.) We 
see now that all these numbers form a set of measure zero. In other 
words, almost all numbers (that is, all but a set of measure zero) admit 
a best approximation by rational fractions. Evidently, then, the basic 
problem of the measure theory of approximation is the question of de- 
termining the measure of the set of numbers admitting some specified 
degree of approximation by rational fractions. In  particular, what is 
the best law of approximation admitted by almost all (see above) num- 
bers? In other words, within what limits can the law given by in- 
equality (61) be improved if we agree to neglect the set of numbers a 
which is of measure zero? We shall solve this problem in the next sec- 
tion. 
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THEOREM 30. Suppose that y(n) is an arbitrary posilive fundion with 
natural argumerlt n. The inequality 

a,  = a ,  (4 >, y(n)  (62) 

is, for almos& all a, satisfied by an i@a i&e  number of values of n if the 
series ZrSI l lV(n)  diverges. On the other hand, this inequality is, for al- 
mod all a, satisjed by only a finite number of values of n if fhe series 
Zr=, llcp(n) converges. 

PRELIMINARY REMARK. In particular, if we set the function ~ ( n )  
equal to a constant positive number M, we conclude from Theorem 30 
that the set Enf, which we used in proving Theorem 29, is of measure 
zero. Thus, Theorem 29 can be regarded as one of the simplest cases 
of Theorem 30. 

PROOF. The first assertion of the theorem is proved in a manner com- 
pletely analogous to that used in the proof of Theorem 29. Suppose 
that I,+. is an interval of rank m + n at  all of whose points 

(We shall not impose any conditions on al ,  az, , k.) Keeping the 
notation that we used in the proof of Theorem 29, we obtain the in- 
equality, analogous to inequality (59), 

When we sum this inequality over all intervals of rank m + n that 
satisfy conditions (63) (denoting the set of all numbers of the inter- 
val (0, 1) satisfying these conditions by Em, .), we obtain 

Successive application of this inequality gives 
n 

If the series 2g1 llV(n) diverges, the series 
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will obviously, for arbitrary m, also diverge. l;ronl the theory of infinite 
products, it follows that the product 

n 

approaches zero as n -+ 03. Thus, we have, for arbitrary m, 

~ u q e v e r ~  number a for which 

a m + i  < (m+O (i= 1,  2, . . .)# 

obviously belongs to all the sets 

E m ,  n ( n = l ,  2, ...); 

therefore, the set of all these numbers, which we shall denote by Em, 
must be of measure zero. Finally, if we set 

E,+E2+ . . .  +Em+ . . .  = E D  

we see that SYXE = 0. But every number a for which inequality (62) 
is satisfied only a finite number of times must, obviously, for sufficient- 
ly large m, belong to the set Em and, hence, to the set E. This proves 
the first assertion of the theorem. 

Suppose now that the series Z,"=, llcp(n) converges. Suppose that 
J ,  is one of the intervals of rank TZ and that J L ~ ,  is an interval of rank 
n + 1 contained in J, and defined by the additional condition that 
a,+l = k. From the second inequality of (57), we have 

so that 
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If we denote by F, the set of numbers of the interval (0, 1) for which 
a, > cp(n)  and sum the inequality obtained over all intervals J, of 
rank n, we see that 

since 2 m J n  = 1. Thus, the measures of the sets F 1 ,  F z ,  , F,, 
form a convergent series. Denoting by F the set of those numbers in 
the interval (0, 1) that belong to an infinite number of sets F,, we 
then have2 

%IF = 0. 

But the set F is, of course, just the set of numbers for which the in- 
equality (62) is satisfied for an infinite number of values of n. This 
proves the second assertion of the theorem. 

14. Measure-theoretic evaluation of the increase in the 
denominators of the convergents. The fundamental 
theorem of the measure theory of approximation 

T I I E ~ K E M  31. There exists an absolutely positive constant B such that al- 
most ezlerywhere, for sutciently large n, 

PRELIMINARY REMARK. We saw in section 4 of Chapter I (Theor. 12) 
that the denominators q, for all numbers a increase with increasing n 
no more slowly than some geometric progression with absolutely con- 
stant ratio. Theorem 31 asserts that, for almost all a, the numbers q, do 
not increase faster than some other geometric progression, also with 
absolutely constant ratio. This situation can be expressed in a differ- 
ent way: there exist two absolute constants a and A (where 1 < a < A )  
such that, for almost all numbers a in the interval (0, I) ,  for sufficient- 
ly large n, 

3 This is a well-known theorem in measure theory. However, here is the proof: 
Obviously, the set F is, for arhitrary m, contained in the set Z&F,; the measure 
of the latter set does not exceed 2F==,WF, and, consequently, for sufficiently large 
m, it may be made arbitrarily small. 
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In fact, there is a considerably stronger proposition: there exists an 
absolute constant y such that almost everywhere 

however, the proof of this theorem is considerably more complicated 
and requires certain more powerful tools, which we shall discuss in 
sections 15 and 16. Unfortunately, the framework of the present book 
does not allow inclusion of this proof.3 On the other hand, for our im- 
mediate purpose, which is to establish Theorem 32, the property of 
the numbers q, referred to in Theorem 31 is quite sufficient. 

PROOF. We denote by E,(g) (n > 0, g > 1)  the set of numbers in the 
interval (0, 1 )  for which 

Obviously, this set represents a system of intervals of rank n. The 
length of any one of these intervals is, as we know from section 12, 
equal to 

since successive application of the obvious inequality 

qn > anQn - 1 

gives 
9, > anan-1 . + a2al. 

Therefore, 

where the summation is taken over all combinations of natural num- 
bers a ~ ,  a,, b , a, that satisfy the inequality uluz a, > l. To 
evaluate this sum, we note that 

n n n 

Proof of the above statement was obtained by Khinchin in 1935. See "Zur 
metrischen Kettenbruchtheorie," Compositio Malhemutica, 3, No. 2,275-285 (1936). 
Soon afterward, the French mathematician P. Lc'vy found an explicit expression 
for the constant y, namely, In y = *'/(I2 In 2) (see P. Le'vy, Thkorie de I'addition 
des variabks ddaloires, Paris, 1937, p. 320). (B. C.) 
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and, consequently , 

where J,(g) is the nth-order integral 

over the region 
xi>, 1 ( i =  1, 2, . . ., n), 

For g 5 1, this region is obviously the region 1 5 x i  < 03 (for 
i = 1, 2, , n), and we obtain 

Let us now show that, for g > 1, 

For n = 1, this equation is of the form 

and hence is true. Assuming it is true for n = k, we have 

(g, = 1 1 * %k+1 lk (L) .k+l =; 0 [I. (u) du 

If, in the first integral, we substitute the value of J ~ ( u )  given by for- 
mula (65) and, in the second, that given by formula (66) (which we 
are assuming established for n = k, g 2 I), we obtain 
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which proves the assertion. Thus, 
n - 1  

2n (ing)' 
!YEn (g) < - -3- . 

g 
i = O  

In particular, if we set g = eAn, where A > 1 is a constant, we have 

I =o 
I t  is easy to see that in this sum each term is less than 

therefore, if we use Stirling's formula for approximating the factorial, 
we obtain 

(An)" BE,  (eAn) < en (In 2-A)n -- 
n ! 

where C1 and C2 are absolute constants. 
But if A is sufficiently large, 

A-InA-1112- 1 > 0 ,  

and, consequently YJE,,(eAn) is less than the nth tern) of some con- 
vergent series. Since the series 

00 

2 !BE, (en.) 
n-1 

converges, every number in the interval (0, I), with the exception of 
a set of measure zero, belongs to only a finite number of the sets 
E,(eAVb). This means that for almost all numbers in the interval (0, I), 
we must have, for sufficiently large 11, 

a,a, . . . an < eAn: 

also, since 
= Qn( ln - I+  qn-2 < 2 a n ~ n - ~  

and, consequently , 
qn < 2"anan-, a2a1, 

it follows that almost everywhere, for sufficiently large n, 
qn < 2"eAn = denp 

where B = A + In 2. This completes the proof of Theorem 31. 
This result, which in itself is of considerable interest, is especially 

important for us a t  the moment, since we can use it to obtain a simple 
solution to the basic problem of the measure theory of approximation. 

THEOREM 32. Suppose that f(x) is a positive continuous function of a 
positive variable x and that xf(x) is  a nun-increasing function. Then, the 
inequality 

has, for almost all a, an  infinite number of solutions in integers p and q 
(wdh y > 0) if, for some positine c ,  the integral 

diverges. On [he other hunrl, inequality (67) has, jor almost all a, only a 
finite number of solutions in integers p and q (with q > 0) if the integral 
(68) converges. 

PHEI,IMINAKY KEMAKK.  In particular, on the basis of Theorem 32, 
thc inequality 

has, almost cverywhcre, an infinite number of solutions. On the other 
hand, the inequality 

has, for every constant E > 0, almost everywhere, only a finite num- 
ber of solutions. From these facts, we can get an approximate idea of 
what changes to expect in the general law of approximation if we agree 
to neglect a set of measure zero. 

PROOF. Part 1. Suppose that integral (68) diverges. Let us define 
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where B is the constant referred to in Theorem 31. Then, the integral 
A B A 

where A > a > 0, increases without bound as A -+ a. Since the func- 
tion cp(x)  is, by hypothesis, non-increasing, the series 

diverges. On the basis of Theorem 30, we now conclude that, almost 
everywhere, the inequality 

is satisfied for an infinite set of values of i. But when this inequality 
is satisfied, 

On the basis of Theorem 31, we have, almost everywhere, for suficient- 
ly large i, 

9, < eB'. 

so that 

Therefore, inequality (69) almost everywhere implies the inequality 

for sufficiently large i. This inequality is satisfied almost everywhere 
for an infinite set of values of i. This proves the first assertion. 

Purl 2. Let us now suppose that integral (68), and hence the series, 
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converges. Let us denote by En the set of numbers a in the interval 
(0, 1) that, for a suitably chosen integer k, satisfy the inequality 

(Obviously, the set En consists of the set of intervals of length 2j[n]/n, 
with centers a t  the points l /n,  2/n, * *  , [n - l]/n and of the inter- 
vals (0, f [n] /w  ] and { 1 - f [n]/n, 1 ] .) We then have 

,< 2f (n). 

(The symbol < holds if f[n] > 3.) Thus, the series 

converges. We conclude from this, just as we have done on previous 
occasions, that almost every number a in the interval (0, 1) can belong 
to only a finite number of sets En. This means that almost all the num- 
bers a in the intcrval (0, 1) satisfy thc inequality 

for a sufficiently large positive integer q and for an arbitrary integer p. 
This proves the second assertion of the theorem. 

In the nest section, we shall learn a method that makes it possible 
to solve much more profound problems in the measure theory of con- 
tinued fractions. 

15. Gauss's problem and Kuz'min's theorem 
The problem that we are about to discuss was, historically, the first 
problem in the measure theory of continued fractions. This problem, 
posed by Gauss, was not solved until 192tL4 

Setting, as usual 
a = [ 0 ;  a, ,  a,, . . . ,  a,, . . . I ,  

See K. 0. Kuz'min, "Ob odnoi zadache Gaussa" (a problem of Gauss), Doklady 
akad. nauk, ser. A ,  375-380 (1928). Another solution was published in the article 
by P. LEVY, "Sur les lois de probabilitC dont dependent les quotients complets et  
incomplets d'une fraction continue," Bull. Soc. Math., 57, 178-194 (1929). (B. G.) 
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we denote by z ,  = z,(a) the value of the continued fraction 

that is, we set 
Z, = r ,  - a,. 

Obviously, we always have 

o < z n  < 1. 

We denote by nz,,(.v) the nleasure of the set of numbers a in the inter- 
val (0, 1) for which 

z, (4 < X .  

In one of his letters to Laplace, (;suss stated that he had succeeded 
in proving a theorem that implied that 

In  his letter, he indicated that it would he very desirable to obtain an 
estimate for the difference 

for large values of 1 2 ,  but that he had been unable to (lo so. Apparently, 
Gauss' proof was never published, nor were other proofs of his assertion 
known before 1928,1vhc.n Kuz'rnin pu1,lishecl his proof and gave a good 
estinlate for the difference (70). The present section is devoted to an 
exposition of these results and of certain generalizations of them that 
we shall need 1ater.j 

I t  was already known to (lauss that the seqilcnce of functions 

satisfies the functional equation 

Like Gauss, Kuz'min formulated the results in probability-theory terms, which, 
of course, does not affect their content from the standpoint of measure. 
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To show this, note that, on the basis of the obvious relationship 

the inequality 

2*+1 < X 

is satisfied if, and only if, for a suitably chosen positive integer k, 

Since the measure of the set of numbers satisfying this inequality is 
obviously 

relationship (71) holds. 
I t  can easily be vcrified directly that the function 

satisfies the equation 
03 

for an arbitrary constant C, which probably helped Gauss in finding 
the proper expression for the limit of the function m,(x) as n -+ a. 

Formal differentiation of equation (7 1) gives 
OD 

The validity of (72) can easily be shown in a rigorous manner. Since 
obviously zo(a) = a, we have mo ( x )  = x ,  and hence mfo(x) = 1. If the 
function mf,(x) is, in general, bounded and continuous for some n, the 
series on the right side of (72) converges uniformly in the interval 
(0, 1). The sum of this series is therefore bounded, continuous, and 
equal to mf,+l(x) (due to the well-known theorem on termwise differen- 
tiation of series). Thus, (72) is proved inductively. 

Equation (72) is much more convenient for making investigations 
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than is equation (71) .  Kuz'min's basic result, which we shall now prove, 
has to 'do with this relationship. 

TIIEOKEV 33. Suppose that f l(a),  f2(x) ,  , j , , ( x ) ,  i s  a sequeicce 
of real fz~nciiorts defined olz h e  i~z te r zd  (0, 1 )  /hut,  o ~ c  t iu l  iuterval, satisfy 
the relutio,~sliip 

03 

then, 

where 
1 

X i s  a n  absolute positive cotlstu~zt, ulzd - 1  i s  u p o ~ i l i w  comtant itepelzding 
only ott M uud p.  

The proof is complicated, and therefore Lve shall first give several 
elementary lemmas. 

LEMMA 1. For arbilrury 12 2 0, 

where (p,/q,  ( p ,  + p,_,)/(q, + q,-1)) i s  u u  arbitrary in terzd of rank n 
and the summation takes place over all i~zterzluls of ralzk n (or,  what i s  the 
same thing, over the elements a l ,  a2, , an from 1 to a). 

PROOF. For n = 0 ,  (74)  is trivial, because in that case there is a 
unique interval (0 ,  1 )  for which = 0 ,  q~ = 1,  p-1 = 1 ,  and q-1 = 0. 
Assuming now that equation (74) is valid for some n ,  we have, on the 
basis of the fundamental equation (73) ,  
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which prows the lemma. 
LEMMA 2. L'ader the conditio)zs of Theorem 33, for IZ >_ 0, 

1 f i  (XI 1 < + + 4M. 

~'KOOF. If we differentiate (74) termwise, we obtain 

'The validity of termwise differentiation follows from the uniform con- 
vergence of both sums on the right side for 0 < x < 1. We note that 

Then, on the basis of Theorem 12 of Chapter I ,  

and, in view of the obvious relationship 

we have, because of the conditions of Theorem 33, 

which was to be proved. 
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it follows that 
t T 

1 +. < f n + l ( ~ )  < (0 \< x \< 1). 

PROOF. Under the conditions of the lemma, the fundamental equa- 
tion (73) gives 

or, equivalently, 

or. finallv. 
4 T 

t T 
1 +, < f n + l ( 4  < ;-. 

which was to be proved. 
LEMMA 4. 

1 1 

PROOF: Because of the fundamental equation (73) (for n > O ) ,  

k + l  

so that the lemma follows by induction. 
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PROOF OF THEOREM 33. The function fo(x) is, by hypothesis, differ- 
entiable and hence continuous for 0 < x 5 1; since it is, again by 
hypothesis, positive in that interval, it must have some positive mini- 
mum, which we shall denote by m. From the condition m 5 jo(x) < M 
(for 0 5 x 5 I), we obtain 

where 

We now define 

On the basis of Lemma 3, the function F(x) = g/(l + x )  satisfies the 
equation 

(which can easily be shown by direct verification). From this, i t  obvi- 
ously follows that the sequence of functions 

satisfies (73). Therefore, all the conclusions that we have deduced from 
that equation, in particular (74), are valid. As before, we set 

so that, on the basis of the obvious inequalities 

q n + x q n - ~ S q n f  q n - l < * q n  and vo(u) >0, 
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we obtain 
(n )  

On the other hand, the mean value theorem b' ~ ~ V C S  US 

where u' is one of the points of the interval (pn/q,, ( p ,  + p,-I)/ 
(q, + qn-1)), and l/[qn(qn + l/n-l)] is the length of this interval. Re- 
lations (75) and (76) g' ~ v e  us 

But since, obviously, (77) 

ly0(.")l< IfhW I+g < ~ + g  ( W x S  I) ,  
it follows that 

Inequality (77) then gives us 
1 

Thus, we obtain 

If we examine the sequence of functions 
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and f o l l o ~  the same line of reasoning as before, we obtain the inequality 

where 
1 

Since 1 > O and 1' > 0, we have, for sufficiently large r r ,  

01-g l  < ~ - ~ - ( 1 + 1 ' ) + 2 - " ' ~ ( p + o ) .  

Also, since 

we have 

G l - g l  < ( G - g ) a + 2 - n + 2 ( p + G ) ,  
where 

is an absolute positive constant. 
Let us summarize the results that we have obtained. From the con- 

ditions /ha! 

we have shown Ihat, for suficienlly large n, 

where 
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If we now start with the function f , ( x )  instead of jo(x) and repeat the 
line of reasoning that we have used, we obtain 

where pl is a positive number such that 

I f : , ( x ) I  < PI ( 0 4  x\< 1). 

If we carry this process further, we obtain, in general, 

and, for r > 0, 

that 

f i r - & <  w r - 1 - & - 1 ) -  

where p , - ~  is a positive number such 

l f ; r - l ) n ( q  < P r - 1  

On the basis of Lemma 2, we can set 

and, consequently, if n is chosen sufficiently large, 

~r < 5M ( r =  1,  2, . . .), 
Therefore, successive application of inequality (78) gives us (for r = 1, 
2, * - -  , n) 
0, - gn < (G - g )  an + 2-"+* {(p + 2M) an-1  

+ 7MP-2 + 7 M W 3  + . . . + 7M% + 7M). 
Since 6 < 1 is an absolute constant, it obviously follows that 

Gn - g,, < Be-? 
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where h > O is an absolute constant and B > 0 depends only on M 
and p. 

From this, it follows, first of all, that there is a common limit 

lim Gn -- lim gn = a  
n+co n + <.m 

and that 

so that, in particular, 

and, consequently, on the basis of Lemma 4, 

Finally, suppose that 
n2< N < ( n  + 

Since, on the basis of inequality (79), 

it follows from Lemma 3 that 

a If,,, ( x )  - ii; 1 < 2Be-An = Ae-"@+I) < ~ e - ~ ~ ~ ,  

where A = 2BeA. This inequality, which we have established for suffi- 
ciently large N, is obviously true for all N 2 0  if we choose a sufficient- 
ly large constant A .  This completes the proof of Theorem 33. 

Let us now turn to Gauss's problem. If we set 
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we obtain fo(x) - 1 .  Therefore, all the conditions of Theorem 33 are 
satisfied. Thus, we obtain 

from which, by integrating, ive obtain 

where A and X are absolute positive constants. This not only proves 
Gauss's assertion, but also gives a good approximation of the remainder 
term.6 

Let us now use this result to obtain an approximation of the meas- 
ure of the set of points for which a,  = k for sufficiently large values 
of n. Since, obviously, the condition a, = k is equivalent to the in- 
equalities 

it follows that 

On the basis of inequality (80), it follows that 

We now have a precise limiting relationship for the quantity %RE , (3 
~ h b  method that E v y  used makes it possible to obtain a better approximation. 

He showed that 

(O< x,< 1). 

(B. G.) 
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for which we had only rather crude inequalities in section 13. Specifi- 
cally, 

Thus, for example, the measure of the set of points for which a, = 1 
approaches the quantity 

a s n - a .  
Besides proving Gauss's assertion, Theorem 33 enables us to obtain 

a more general result, the importance of which will be shown below. 
We denote by M,(x) the measure of the set of numbers belonging to 
some fixed interval of rank k and satisfying the condition z k + ,  < x; in 
other words, M , ( x )  is the measure of the set of numbers in the interval 
(0, 1) satisfying the condition 

where r l ,  r2, * * *  , r k  are certain fixed natural numbers and where 
n 2 0 and x(0 5 x 5 1 )  can be varied arbitrarily. 

For the conditions (82) to be satisfied, it is obviously necessary and 
sufficient that 

where r is some natural number. It then follows that 

so that the sequence of functions Mi(%),  M ; ( X ) ,  , M:(x) ,  
satisfies equation (73).  

An arbitrary number a of the interval [pk/qk, (pk + pk-J/ 
(qk + qk-I)] can be represented in the form 
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or, since 21. = l / r , < + l ,  

If we now set 

we obtain a new sequence of functions: 

xo ( x ) ,  w .  9 X, (X I ,  . ; 

here, the functions x l ( x ) ,  which differ from ihc corresponding func- 
tions pf , , (x)  only by a constant factor, also satisfy (73). Since obviously 

equation (83) gives us 

so that 

and 
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This shows that Theorem 33 can be applied to the sequence of func- 
tions xf,(x), where the numbers A and X will be arbitrary constants 
(in particular, independent of rl, r2, , rk). We thus obtain 

If we integrate this relation between the limits l / ( r  + 1) and l / r ,  
where r is an arbitrary natural number, we obtain, for (8'1 < 1, 

and since, obviously, 

we have 

Finally, we can sum this relationship from 1 to ~0 for certain of the 
numbers rl, r2, * , r k  (arbitrarily chosen). As a result of this summa- 
tion, the terms with like subscripts disappear on both sides of the equa- 
tion, so that instead of a succession of subscripts l ,  2, , k, we ob- 
tain a succession of completely arbitrary subscripts nl, n2, 0 - 0  , nt. 
In all other ways, the equation remains unchanged. Thus, we obtain 
the following theorem. 
THEOREM 34. Two absolute positive constants A and X exist such that, 
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for nl < nz < * * *  < nt < nr+l and for arbitrary positive integers 
rl, r2, , rt, r, 

This result shows not only that the measure of the set of numbers 
in the interval (0, 1) for which a, = r approaches a definite limit as 
n --, a, but also that the relative measure of the set of numbers satis- 
fying this condition, given arbitrary fixed values of an arbitrary set 
of preceding elements, approaches the same limit. 

16. Average values7 
The results of the preceding section enable us to prove the following 
general proposition. 

THEOREM 35. Suppose that f(r) is a nun-negative function of a natural 
argument r and suppose that there exist positive constants C and 6 such 
that 

1 - -6 
f ( r )  < C r 2  (r  = 1, 2, . . .). 

Then, for all numbers in the interval (0, I) ,  with the exception of a set of 
measure zero, 

PRELIMINARY REMARK. The convergence of the series on the right 
side of (84) follows, of course, from the condition imposed on the func- 
tion f (r). 

PROOF. Let us define 
1 1 

' The results of this section are to be found in Khinchin's article "Metrische 
Kettenbruchprobleme," Composifio Mathematica, 1, 361-382 (1935). (B. C.) 
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The existence of all these integrals follows easily from the properties 
assumed for the function f (r). For since 

{f (r ) I2 < C2r1-2&, 
it follows that 

is meaningful. The existence of all the integrals then follows on the 
basis of the Bunyakovskii-Schwarz inequality. In  particular, it foi- 
lows that 

1 \ 

Furthermore, for k > i ,  we obviously have 
1 

But, on the basis of Theorem 34 and the inequalities of section 12, 
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and 

If we multiply inequality (88) by %RE and compare the resuit with 
inequality (87), we obtain 

as a result of which (86) gives us 

Noting that 
m 

and using the second inequality of (85) to estimate the right side of this 
equation, we obtain 

From (85) and (89), we have, for n > m > 0, 
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where Cr is some new positive constant. 
We now denote by e, the set of numbers in the interval (0, 1) for 

which 

where t is an arbitrary given positive constant. Obviously, 

so that inequality (90) (for m = 0) gives 

Thus, the series 

converges and, consequently, as we know, almost every number in the 
interval (0, 1) belongs to only a finite number of sets hl, for n = 1, 2, 
3, . This means that, for almost all numbers in the interval (0, 1) 
and for sufficiently large n, 



90 CONTINUED FRACTIONS 

and since e is arbitrarily small, it follows that almost everywhere 

Furthermore, for n2 < N < (?I + I)', formula (90) gives 

If we denote by e , , ~  the set of numbers in the interval (0, 1) for which 
I SN - s , ~  1 2 en2 and if we set 

we then have, for n2 < N < (n  + 

so that the series Z,",,mE, converges. Almost every number in the 
\ interval (0, 1) must then belong to only a finite number of sets En and, 

hence, to only a finite number of sets e , , ~ .  But this means that almost 
all numbers in the interval (0, 1) satisfy the inequality 

for sufficiently large n and for n2 < N < (n  + In other words, al- 
most everywhere 
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for sufficiently large n and for n2 5 N < ( n  + Since c is arbi- 
trarily small, it follows that almost everywhere 

SN sn, --- 
na rag +O [n+oo, n2<N<(n+1)2j. 

On the basispf equation (91), it then follows that almost everywhere 

% + o  [ n - m o ,  n 2 < N < ( n + 1 ) 2 ] ,  no 

and hence, a fortiori, 

In  other words, almost everywhere, 

But from formula (81) of the preceding section 

where A 1 is a new positive constant. Therefore, 

r-1 

and, consequently , 
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Relation (92) then gives us 

almost everywhere in the interval (0, 1). This completes the proof of 
Theorem 35. 

This theorem enables us to establish quite a number of properties of 
continued fractions that are satisfied for almost all irrational numbers. 
For example, let us set 

where k is some (arbitrary) natural number. In this case, the sum 
n 

obviously represents the number of times the integer k occurs among 
the first n elements of a given continued fraction. On the other hand, 
the ratio 

n 

gives us the density of the number k among the first n elements of the 
given continued fraction. Finally, the limit 

lim ." "k) - - d (k), 
n-)a, I' 

if it exists, is naturally interpreted as the density of the number k in 
the entire sequence of elements of the given continued fraction. 

Since the function f(r)  that we have defined clearly satisfies all of 
the requirements of Theorem 35, we conclude, on the basis of that the- 
orem, that, for arbitrary k, this density exists almost everywhere and l h t  
it has the s u m  value almost everywhere. Furthermore, the same theorem 
makes it possible for us to calculate the value of that density. Obvious- 
ly, we have almost everywhere 
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and so on. Thus, an arbitrary natural number occurs as an element in 
the expansion of almost all numbers with equal average frequency. 

We obtain another interesting result by setting 

f ( r ) = l n r  ( r = l #  2* 3# ...). 
All the conditions of Theorem 35 are then satisfied. Therefore, we see 
that almwt everywhere 

or, equivalently, 

Thus, the geometric mean of the first n elements approaches the abso- 
lute constant 

almost everywhere as n -+ m.  

Obviously, Theorem 35 makes it possible to establish analogous re- 
sults for a whole series of other types of average values. However, in- 
vestigationofthearithmeticmean , 

by this method is impossible, because the corresponding function 
f(r) = r does not satisfy the conditions of Theorem 35. However, i t  
is easy to see from more elementary conshjerations that, almost every- 
where, the expression (93) cannot have any kind of finite limit. For 
Theorem 30 (sec. 13) tells us that almost everywhere 
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for a n  infinite number  of values  of n, a n d  hence, a fortiori, 

1 1  ?? a > n in n ,  a n d  hence, - al > In n. 
id n 

Thus, the q u a n t i t y  (93) is a lmost  everywhere unbounded  a n d  there- 
fore, as w e  s t a t ed ,  canno t  h a v e  a finite limit. 
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