FROM THE PREFACE
TO THE FIRST EDITION

The theory of continued fractions deals with a special algorithm that
is one of the most important tools in analysis, probability theory, me-
chanics, and, especially, number theory. The purpose of the present
elementary text is to acquaint the reader only with the so-called regular
continued fractions, that is, those of the form

1
a,+ 1

al+ a,+ ..

usually with the assumption that all the elements a; (¢ > 1), are posi-
tive integers. This most important and, at the same time, most thor-
oughly studied class of continued fractions is at the basis of almost all
arithmetic and a good many analytic applications of the theory.

I feel that an elementary monograph on the theory of continued
fractions is necessary because this theory, which formerly was a part
of the mathematical program at the intermediate level, has now been
dropped from that program, and hence is no longer included in the
new textbooks on elementary algebra. On the other hand, the curricula
at the more advanced levels (even in the mathematics divisions of
universities) also omit this theory.

Since the basic purpose of this monograph is to fill the gap in our
textbook literature, it necessarily had to be elementary and, to as
great a degree as possible, accessible. Its style is in large measure de-
termined by this fact. Its content, however, goes somewhat beyond the
limits of that minimum absolutely necessary for any application. This
remark applies chiefly to the entire last chapter, which contains the
fundamentals of the measure (or probability) theory of continued
fractions—an important new field developed almost entirely by Soviet
mathematicians; it also applies to quite a number of items in the sec-
ond chapter, where I attempted, to the extent possible in such an ele-
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x PREFACE TO THE FIRST EDITION

mentary framework, to emphasize the basic role of the apparatus of
continued fractions in the study of the arithmetic nature of irrational
numbers. T felt that if the fundamentals of the theory of continued
fractions were going to be published in the form of a separate mono-
graph, it would be a shame to leave unmentioned those highlights of
the theory which are the subject of the greatest amount of contem-
porary study.

As regards the arrangement of the material, it need only be men-
tioned that the “formal’ part of the study is contained in a special
preliminary chapter. In this chapter, the clements of the continued
fractions are assumed to be arbitrary positive numbers (not necessarily
integers) and often—even more generally—simply independent vari-
ables. A drawback to such a separate presentation is the fact that the
formal properties of the apparatus being studied are submitted to the
reader before the subject matter itsclf and, therefore, are divorced
from it. This is no doubt undesirable from a pedagogical standpoint.

However, a greater methodological precision is to be attained by
this approach (because the reader can see immediately which properties
of continued fractions come from the very structure of the apparatus
and which exist only under the assumption of positive integral ele-
ments). Such a separate introductory cxposition of the formal part of
the study also makes possible the subsequent development of the
arithmetic theory (which is the main theme of the study) on an already
prepared formal base. Thus, the reader’s attention may be concen-
trated on the content of the material being expounded, without divert-
ing it for purely formal considerations.

A. Kuincuin
Moscow
February 12, 1935
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Chapter 1

PROPERTIES OF THE
APPARATUS

1. Introduction
An expression of the form

1
gt —
ot a1 )
a4+ ...
is called a regular or simple continued fraction. The letters ao, a1, a2,
«++ , in the most general treatment of the subject, denote independent
variables. In particular cases, these variables may be allowed to take
values only in certain specified domains. Thus, a,, a1, a2, *++ may be
assumed to be real or complex numbers, functions of one or several
variables, and so on. For the purposes of the present book, we shall
always assume ai, s, *** to be positive inlegers; ao may be an arbitrary
real number. We shall call these numbers the elements of the given con-
tinued fraction. The number of elements may be either finite or infinite.
In the first case, we shall write the given continued fraction in the form

1
a,+

a, + 1

a2+‘..
1
T

@)

and call it a finife continued fraction—more precisely an nth-order con-
tinued fraction (so that an nth-order continued fraction has » + 1
elements); in the second case, we shall write the continued fraction in
the form (1) and call it an infinite continued fraction.

Every finite continued fraction is the result of a finite number of ra-
tional operations on its elements. Therefore, under our assumptions re-
garding the elements, every finite continued fraction is equal to some
real number. In particular, if all the elements are rational numbers, the
fraction itself will be a rational number. On the other hand, we cannot
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2 CONTINUED FRACTIONS

immediately assign any numerical values to an infinite continued frac-
tion. Until we adopt some convention, it is only a formal notation,
similar to that for an infinite series whose convergence or divergence
is not brought into question. Of course, it can, nonctheless, be the
subject of mathematical investigations.

Let us agree for reasons of technical convenience to write the in-
finite continued fraction (1) in the form

lag; a,, as .. .1, 3)

and the finite continued fraction (2) in the form
lag; ay, Go ...y 4Ll “4)

thus, the order of a finite continued fraction is equal to the number of
symbols (elements) after the semicolon.
Let us agree to call the continued fraction

Sp==lag ay. Gy ..., Gl

where Q < k& < n, a segment of the continucd fraction (4). Similarly,
for arbitrary £ > 0, we shall call s, a segment of the infinite continued
fraction (3). Obviously, any segment of any continued fraction (finite
or infinite) is itself a finite continued fraction. Let us also agree to call
the continued fraction

re==1ay Qrpp -0 Gl

a remainder of the finite continued fraction (4). Similarly, we shall call
the continued fraction

re=1az Gpi1s Gpeos -]

a remainder of the infinite continued fraction (3). Obviously, all the
remainders of a finite continued fraction are finite continued fractions
and all the remainders of an infinite continued fraction are infinite
continued fractions.

For finite continued fractions, it follows that

lagy ay, ay ..., a,]
= {ay @y, @3 ..., Gp_y, 1) (OLRL ).

The analogous relationship

)

lag ay, a, ...1==lay a;, ay ..., Gy_y, 1) (k>0)
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for infinite continued fractions can be meaningful only as a formal
(trivial) notation since the element r, on the right side of this equation,
being an infinite continued fraction, has no definite numerical value.

2. Convergents
Every finite continued fraction,

. [ag: @, ag, ..., a,]

being the result of a finite number of rational operations on its ele-
ments, is a rational function of these elements and, consequently, can
be represented as the ratio of two polynomials

P(ay ay, ..., a,)

Qe ay, ..., ap) ’
in ag, @), ~~+, @, with integral coefficients. If the elements have nu-
merical values, the given continued fraction is then represented in
the form of an ordinary fraction p/q. However, such a representation
is, of course, not unique. For what follows, it will be important for us
to have a definite representation of a finite continued fraction in the
form of a simple fraction—a representation which we shall call canoni-
cal. We shall define such a representation by induction.

For a zeroth-order continued fraction,

[aol = ao ’

we take as our canonical representation the fraction ao/1. Suppose now
that canonical representations are defined for continued fractions of
order less than #. By equation (5), an nth-order fraction
. 1
lagy ay, ..., a,l=laq r,]=a0—+——r—l— .
Here,
ri=l[a; ay ..., a,]

is an (n — 1)st-order continued fraction, for which, consequently, the
canonical representation is already defined. Let us represent it as

=2
then,
. (l’ aopl ' q'
a,, a,, , a,1—a +-—,————‘ ~
[ 0 1 nl 0 p P

T N R AT AR,



4 CONTINUED FRACTIONS

We shall take this last fraction as our canonical representation of the
continued fraction [@o; @, ¢**, a.]. Thus, by setting
Y4

ag, Ay, ..., a }==-"-,
lag, a; n g

pl
ri=la,; a, ..., a“].;7,

we have the following expressions for the numerators and denominators
of these canonical representations:

p=ap -+q', qg=p'. (6)

Thus, we have uniquely defined canonical representations of continued
fractions of all orders.

In the theory of continued fractions, an especially important role is
played by the canonical representations of the segments of a given
(finite or infinite) continued fraction a = [a¢; @i, a2, +++]. We shall
denote by p./qi the canonical representation of the segment

sp=lay a,. a, ..., a;]

of the continued fraction, and we shall call it the kth-order convergent
(or approximant) of the continued fraction a. This concept is defined
in exactly the same way for finite and infinite continued fractions. The
only difference is that a finite continued fraction has a finite number
of convergents, whereas an infinite continued fraction has an infinite
number of them. For an nth-order continued fraction a, obviously

Pn

o a;
qn
such a continued fraction has # 4+ 1 convergents (of orders, 0, 1, 2,
ceen).
TieoreM 1 (the rule for the formation of the convergents). For arbi-
trary k 2 2,
Pr=104Pg_y+ Pr-2

7)
9 = 0401 T Yo (

ProoF. In the case of £ = 2, the formulas in (7) are easily verified
directly. Let us suppose that they are true for all £ < ». Let us then
consider the continued fraction

la; aq +. 0, a,]

PROPERTIES OF THE APPARATUS §
and let us denote by §’,/¢’, its rth-order convergent. On the basis of
the formulas in (6),

Pa=8 45,
9, =P, .

And since, by hypothesis,
’
Pay =8,P, o+ P,
Guo1="0,9n_2F 4 3

(here, we have a, rather than @, because the fraction [a1; as, *¢*¢, aa]
begins with ¢, and not with ao), it follows on the basis of (6) that

. ’ ’ ’
P, =08y(8,P,_y+Pn_3) (38,9021 9,_3)
4 / ’
=a,(ayp,_y+ 9, 9)+(%Ps-3 1+ 9,-3)
=0a,Pp + Pp-n
9, = aupn—z + pn 37 anqn—l +qa-2-
which completes the proof.

These recursion formulas (7), which express the numerator and de-
nominator of an nth-order convergent in terms of the element ¢, and
the numerators and denominators of the two preceding convergents,
serve as the formal basis of the entire theory of continued fractions.

REMARK. It is sometimes convenient to consider a convergent of
order —1; in this case, we set p_ = 1 and ¢_, = 0. Obviously, with
this convention (and only then), the formulas of (7) retain their valid-
ity for £ = 1.

TuroreM 2. For all k > 0,

QePr-1— Padr-1 = (— D*. (8)

Proor. Multiplying the first formula of (7) by g¢—1 and the second
by px—1 and then subtracting the first from the second, we obtain

TePr-1— Padp-1 = — Gr-1Pr—2— Pr-19%-2):
and since A ~ N .
» C(

qop-1— pp9-1=1 1,

the theorem is proved.

e I



6 CONTINUED FRACTIONS

COROLLARY. For all k > 1,

de—1 dx qrGr—1’

Por __Pe & b (9)

THEOREM 3. For all k > 1,
qePr-2— Prdp-2=(— D Qg

Proor. By multiplying the first formula of (7) by g2 and the sec-
ond by pi—2 and then subtracting the first from the second, we obtain,
on the basis of Theorem 2,

9kPr-2— Pada-2== 04 Gs—1Pa-2— Pa—e-D =(—1)""a,,

which completes the proof.
CorOLLARY. For all k > 2,

pk—? _ﬁ;_ (— 1)k—1 ak

. (10)

9p-2 9 995 -2

The simple results that we have just obtained make it easy for us
to reach certain very importdnt conclusions concerning the relative
values of the convergents of a given continued fraction. Specifically,
(10) shows that the convergents of even order form an increasing se-
quence and that those of odd order form a decreasing sequence. Thus,
these two sequences tend toward each other (all this under our assump-
tion that the elements from @, on are positive). Since, by (9), every
odd-order convergent is greater than the immediately following even-
order convergent, it follows that every odd-order convergent is greater
than any even-order convergent. Therefore, we may draw the follow-
ing conclusions.

THEOREM 4. Even-order convergents form an increasing and odd-order
convergenls a decreasing sequence. :Also, every odd-order convergent is
grealer than any even-order convergenl.

It is particularly evident that, for a finite continued fraction a, every
even-order convergent is less than a and every odd-order convergent
is greater than a (except, of course, the last convergent, which is
equal tq a).

We c%nclude this section with the proof of two simple, but extremely
important, propositions concerning the numecrators and denominators
of the convergents.

PROPERTIES OF THE APPARATUS 7
THEOREM 5. For arbitrary k (1 < k < n),

Pt P a1

lag: a, ay ..., a,]==
Q12 T 9p—2

(Here, ps, i, 7 refer to the continued fraction on the left side of this
equation.)
Proof. From (3),

lag @y, 6y ..., @)=y a1, Gy .y Gg_y, Tyl
The continued fraction on the right side of this equation has as a

(k — 1)st-order convergent the fraction pi—i/qe—1. Its kth-order con-
vergent, pi/qs, is equal to the fraction itself; and since from O]

Pe=DPr-1TrtPr-2 G=dp-1Te T dr-2
the theorem is proved.

TueoreM 6. For arbitrary k > 1,

Proor. For & = 1, this relationship is obvious because it is of the
form

9
L= a
9o !
Suppose that £ > 1 and that
q4,_
k=l —a,_y; Gp_ge .0 @yl (12)
Tp-2

On the basis of the equations in (7),
9 =0p1 1+ a2

and we have

9k —a,+ Zr;-? — [ak; 9e1 ]

Ty k-1 92

Therefore, from formulas (5) and (12),
9

91

=la, ar_p ---» @l

which completes the proof.

b




8 CONTINUED FRACTIONS

3. Infinite continued fractions
To every infinite continued fraction

lag a, ay, . ..1, (13)
there corresponds an infinite sequence of convergents
oo B B (14)
qo ’ ql il ’ (]k ’

Every convergent is some real number. If the sequence (14) converges,
that is, if it has a unique limit a, it is natural to consider this number a
as the “value” of the continued fraction (13) and to write

a=[ay a, a ...l

The continued fraction (13) itself is then said to converge. If the se-
quence (14) does not have a definite limit, we say that the continued
fraction (13) diverges.

In many of their properties, convergent infinite continued fractions
are analogous to finite continued fractions. The basic property which
makes possible the further extension of this analogy is expressed by the
following theorem.

Turorem 7. If the infinile continued fraction (13) converges, so do all
of ils remainders; conversely, if at least one of the remainders of the con-
tinued fraction (13) converges, the continued fraction ilself converges.

PRrOOF. Let us agree to denote by p./¢: the convergents of a given
continued fraction (13), and by p’i/¢’. the convergents of any one of
its remainders, for example, 7,,. From formula (11), we have

Pn+k

Ph

Pn-y — +’ Pn-2
k

4n+k :

____Z“——(k-zo,l,.--)~ (15)

P
4n—1 ‘7k' + Gn-2
9k

=lag a, 85 ..., a5 4]=

It follows immediately that if the remainder r, converges, that is, if
as £— o the fraction p’+/q’+ approaches a limit which we shall also
denote by r,, then the fraction patr/¢a+r will converge to a limit a
equal to

a_pn—lrn+p[:£. (16)

By solving (13) for ’4/¢’x, we establish the validity of the converse,
thus completing the proof of the theorem.

A e
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We note that fermula (16), which we have just established for con-
vergent infinite continued fractions, is exactly analogous to formula
(11), which we proved earlier for finite continued fractions. Similarly,
the theorem analogous to Theorem 5 holds for infinite continued frac-
tions.

The following propositions for convergent infinite continued frac-
tions follow directly from Theorem 4 of the preceding section.

THEOREM 8. The value of a convergent infinite continued fraction is
grealer than any of its even-order convergenls and is less than any of its
odd-order convergents.

Furthermore, on the basis of this theorem, the corollary to Theo-
rem 2 of the preceding section implies the following result, which plays
a basic role in the arithmetic applications of the theory of continued
fractions.

THEOREM 9. The value a of the convergent infinite continued fraction
(13) for arbitrary k > O satisfies the inequality*

Py 1

fo ——
qk qqu+l

.

Obviously, Theorem 9 is also valid for the finite continued fraction

a=lay; a,, a,, ..., a,],

for all £ < n, except that, for the single case of # = » — 1, the in-
equality must be replaced by equality, since @ = pn/gn. If a is the value
of a convergent infinite continued fraction (13), we shall also refer to
the elements of that continued fraction as the elements of the number a.
Similarly, we shall refer to the convergents, segments, and remainders
of the continued fraction (13) as the convergents, segments, and re-
mainders, respectively, of the number a. On the basis of Theorem 7, all
the remainders of a convergent infinite continued fraction (13) have
definite real values.

The question naturally arises as to whether there are tests for the
convergence of continued fractions, just as for infinite series. In the
case with which we are concerned, that is, when a, > 0, for all ¢ > 1,
there exists an extremely simple and convenient test for convergence.

! We note that, under our assumptions, g¢ > 0, for all £ > 0 (since ¢o = 1 and
qi = a), we can show by induction from the second part of eq. [7] that ¢ > O,
for all £ > 1).

Bk et



10 CONTINUED FRACTIONS

TueoreM 10. For the continued fraction (13) lo converge, it is neces-
sary and sufficient that the series

2a, (n
n=1

diverge.

Proor. It clearly follows from Theorem 4 that a necessary and suffi-
cient condition for the convergence of an infinite continued fraction is
that the two sequences referred to in that theorem have the same limit.
(Theorem 4 clearly implies that each of these sequences has a limit.)
And, as formula (9) shows, this is the case if and only if

QJrs1 —>00 as kR —>00. (18)

Thus, condition (18) is necessary and sufficient for the convergence of

a given continued fraction.
Suppose that the series (17) converges. From the second formula

of (7),
9% > Qe-2 (k>1).

Therefore, for arbitrary k, we have either gx > ge—1 OF Qi1 > i—2.
In the first case, the second formula of (7) yields

9e < 84y +Gp_o

and therefore, for sufficicntly large £ (when ¢x < 1, which, because
of the convergence of the series in eq. [17], must be the case for k > ko),
we have

q
%< Zay

In the second case, the same formula gives, for a; < 1,

q
qk<(l+ak)qk 1<] ke 1'-

Thus, for all £ > ko, we have

1
9, < lt.a_kql’ '

where I < k. If I > ky, we may apply the same inequality to g,.

PROPERTIES OF THE APPARATUS 11

By continuing this reasoning, we arrive at the inequality

qs
< Tpi—=a) . 0=a)’ (19

where &> 1> -+« > 72>k amd s < ko. But, because of the as-
sumed convergence of the series in (17), the infinite product

H(l —a,),
n=Rky

as we know, converges: that is, it has a positive value, which we denote
by \. Obviously,

A—a)(l—a)...(1—a)> I[(l—a )= h.

n=ke

Therefore, if we denote by Q the largest of the numbers ¢o, g1, ~~~,
¢k—1, we conclude from inequality (19) that

GB<T (k> k.
consequently, 09
e <z (B2 k),

and the relationship in (18) cannot hold. Therefore, the given continued
fraction diverges.

Conversely, suppose that the series in (17) diverges. Since qx > gx—_s,
for all £ > 2, if we denote by ¢ the smallest of the numbers go, ¢i, we
have k£ > 0, for arbitrary g, > c. Therefore, the second formula of (7)
gives us

> qp-2+ ca, k>2).

Successive application of this inequality gives us

&
Gor = 9o+ anlazn
and
k
12> +C%laen+p
so that

2k+1

Gor +Gor1 > o+ 1+ ¢ “Zlan;
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in other words, for all &,
k
Qe+ qp > ¢ Zla,,.
n=

We have already proved this inequality for odd values of %, and it
can obviously be established for even values of £ by the same method.
It then follows that at least one of the factors in the product qigi—i
exceeds 4cZ%.1a,, and since the other factor is never less than ¢, we
have it

AN
9r-1> CT 2‘ @

n=1

Because of the assumed divergence of the series in (17), this implies
relationship (18) and, consequently, the convergence of the given con-
tinued fraction. This completes the proof of Theorem 10.

4. Continued fractions with natural elements

From this point until the end of the book, we shall assume that ele-
ments aj, @z, - <= are natural numbers, that is, positive integers, and
that @y is an integer, though not necessarily positive. If such a con-
tinued fraction is infinite, Theorem 10 ensures its convergence. There-
fore, we can henceforth freely assume that any continued fraction that
we are dealing with is convergent, and we can speak of its “value”.
If such a continued fraction is finite, and if its last element (a,,) is 1, it
is evident that 7,_; = a,_) -+ 1 is an integer. Therefore, in this case,
we can write the given nth-order continued fraction [go; @1, @2, *+-,
@,_1, 1] in the form of an (» — 1)st-order continued fraction [ao; a1, a2,
<o+ a1+ 1]; in this new form, the last element is clearly greater
than unity.

Because of this fact, in all that follows we can exclude from consider-
ation finite continued fractions whose last elements are equal to unity
(except, of course, for the zeroth-order fraction [1]). This plays an im-
portant role in the question of the uniqueness of the representation
of numbers by continued fractions (see Chap. II, sec. 5).

Obviously, the numerators and denominators of the convergents, in
the case now under consideration, are integers. (For p_i, g1, po,
and g, this can be seen immediately, and for the numerators and de-
nominators of the remaining convergents, it follows from the formulas
in eq. [7).) Furthermore, we have the following very important propo-
sition.

THEOREM 11. All convergents are irreducible.

PROPERTIES OF THE APPARATUS 13

The proof follows immediately from formula (8), since any common
divisor of the numbers p, and ¢, would at the same time be a divisor
of the expression gnpa—1 — Pagn_1.

The second formula of (7) shows that ¢x > gx—), for every k > 2.
Therefore, the sequence

i 9o0 v os Qoo oo

is always increasing. We have a much stronger proposition concerning
the rate of increase of the numbers gx.
THEOREM 12. For arbitrary* k > 2,

k-1
gp>2%.

Proor. For k& > 2,
Gx =041+ 9r-22> Qo1+ Tr-2> 2432
Successive application of this inequality yields
Qe > 25q,=2% Qi > 2'q, > 2,

which proves the theorem. Thus, the denominators of the convergents
increase at least as rapidly as the terms of a geometric progression.

Intermediale fractions—Suppose that & > 2 and that i is an arbi-
trary negative integer. The difference

Ppy+D+p, g Pyt P
G U+D+ag, , G i+4q,,°

which, as is easily seen, is equal to
(=D
lqk—l (1 + 1) + qk-Ql [qk—li + qk_Ql ’

has the same sign for all + > 0, depending only on whether k is even
or odd. It follows from this that the fractions

Pyy PaaytPry Prot2P, Paog TPy y_ Pa 20)

Qoo Dot 9oy Bo T2, " Gyt 8, 4

2 Here, and in all that follows, in the case of a finite continued fraction only those
values of # for which g; is meaningful are to be considered.

Y AL




14 CONTINUED FRACTIONS

form, for even £, an increasing and, for odd &, a decreasing sequence
(see Theor. 4). The first and last terms of this sequence are either both
even- or both odd-order convergents. The intervening terms (if there
are any, that is, if a;, > 1), we shall call intermediate fractions. In arith-
metic applications, these intermediate fractions play an important
role (though not as important a role as the convergents). To make
their mutual disposition and the law of their progressive formation
clearer, it is convenient to introduce the concept of the so-called
mediant of two fractions.

The mediant of two fractions a/b and ¢/d, with positive denomina-
tors, is the fraction

a+c
b+d-

LemMA. The mediant of two fractions always lies belween them in value.

Proor. Suppose, for definiteness, that a/b < ¢/d. Then, bc -

ad > 0, and, consequently,

a+tc a__ bc—ad
v rd 5 s ra =

a+tc ¢ ad—bc
brd a7 seFa <

which proves the lemma.

We see immediately that each of the intermediate fractions in the
progression of (20) is the mediant of the preceding fraction and the
fraction pi_1/qx—1. By going through progression (20) and successively
forming the mediants, we proceed from the convergents pi_o/qr—2 in
the direction of the convergents pi_1/¢s—1. The concluding step in
this sequence will occur when the mediant constructed coincides with
pe/qx. This last fraction lies between pi_i/gi—) and pe_s/gi—2, as we
know from Theorem 4. We also know that the value a of the given
continued fraction lies between pr_y/qi—1 and pi/gs, and that the
fractions pi_s/qgi—s and pi/qi, which are cither both of even order or
both of odd order, lie on the same side of the number a. It follows from
this that the entire progression in (20) lies on one side of the number a
and that the fraction p_1/¢i— lies on the other side. In particular, the
fractions (pi—1 + pi—2)/(gi—1 + qi—2) and pi_1/qi—1 are always on
opposite sides of a. In other words, the value of a continued fraction
always lies between an arbitrary convergent and the mediant of that con-
vergent and the preceding one. (We suggest that the reader make a draw-
ing to illustrate the relative positions of all these numbers.)

This remark indicates a method whereby, if we know the conver-
gents pi_2/qi—2 and pr_1/qx—1, we can construct the subsequent con-
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vergent pi/q: without knowing the element a; (but using our knowl-
edge of the value a of the continued fraction). Specifically, we first
take the mediant of the two given fractions, then the mediant of this
mediant and pi_1/gs—1, and so on, each time taking the mediant of the
mediant just obtained and the fraction ps—1/qi—1. We already know
that these consecutive mediants will initially approximate a. The last
mediant of this progression that lies on the same side of a as does the
initial fractions pi—s/qi—2 is pr/qi. For, as we already know, pi/q; lies
somewhere among the mediants in the progression, and on the same
side of a as pi—a/qi_2. Therefore, it only remains for us to show that
the subsequent mediant will lie on the opposite side of a. But the last
mediant is (px + pr—1)/(gx + gs—1) and, on the basis of the remark
made above, it does indeed lie on the opposite side of the number a.
There is another even more important consequence of the relative
positions of a number a, and its convergents and intermediate frac-
tions. The intermediate fraction (px + pr+1)/(gx + gr+1), since it is
between pi/qi and a, lies closer to pi/q: than does a; that is,

Pe Pet Py P 1

o — ] > —
ety

P

9, 9| 7+ 4,)

(Equality is impossible here because this would indicate that
Pt Py Prao ar =1
G Fdyy Gy P ’
that is, that a would be a finite continued fraction with last element
equal to unity, which we excluded from consideration in the beginning.)
Thus, we arrive at the following important result.
TuroreM 13. For all k > 0,
S
qy

1

—_—, 21
9 (Tpsr T 9 @h

This inequality, which gives a lower bound for the difference
la — (pr/qs)|, supplements the inequality exhibited in Theorem 9,
which provides an upper bound for the same difference.



Chapter 11

THE REPRESENTATION OF
NUMBERS BY CONTINUED
FRACTIONS

5. Continued fracticns as an apparatus for
representing real numbers
THEOREM 14. To every real number a, there corresponds a unique con-
tinued fraction with value equal to a. This fraclion is finite if a is rational
and infinile if a is irrational.!
Proor. We denote by ao the largest integer not exceeding a. If a is
not an integer, the relation

a=a0+% (22)

allows us to determine the number r;. Here, clearly, r, > 1, since

1
';T =a&—4q < 1.

In general, if 7, is not an integer, we denote by ¢, the largest integer
not exceeding r, and define the number 7,4, by the relation

r.o—a L (23)

n

This procedure can be continued as long as r, is not an integer; here,
clearly, 7, > 1 (n > 1).
Equation (22) shows that
a == [ag; ryl.

Suppose that, in general,

a=lay a,, ay, ..., a,_y, r,l @4

! We remind the reader that we are considering continued fractions with integral
elements, that a; > 0 for 7 > 1, and that the last element of every finite continued
fraction must be different from unity.

16
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Then, from equations (5) and (23), we have

a=lag a,, a3, ..., Gy_1. G, Tyl

thus, (24) is valid for all » (assuming, of course, that r, rs, ##¢ 7,
are not integers).

If the number a is rational, all the r, will clearly be rational. It is
easy to see that, in this case, our process will stop after a finite number
of steps. H, for example, 7, = a/b, then

_a—ba, ¢
Iy 8y =—— =7

where ¢ < b, since r, — ¢, < 1. Equation (23) then gives

b
Fnyi=7¢

(provided ¢ is not equal to zero, that is, if 7, is not an integer; if r, is
an integer, our assertion is already satisfied). Thus, 7,41 has a smaller
denominator than does r,. It follows from this that if we consider 7y, 72,
#¢¢ we must eventually come to an integer 7, = a,. But, in this case,
(24) asscrts that the number o is represented by a finite continued
fraction, the last element of which is ¢, = r, > 1.

If a is irrational, then all the 7, are irrational and our process is in-
finite. Setting

lag, ay, ag, ..., a,]= %’—

(where the fraction p,/g, is irreducible and ¢, > 0), we have, by (24)
and (16) of Chapter I,

— Pn-ifntPa-z n>9).
¢ dn-1"n+t 9n-2 (n>2)

On the other hand, it is obvious that

Pn __ Pn-18n + Pn—2

qn Gn-18n+4qn-2’
so that
P __ (Prn—19n-2—9n-1Pn-2) (Ffn— an)
qn (Gn-1"n—+ 9n-2) (Qn-18n + gn—2)
and, consequently,
Pn
9n

o —

1 <L

oQ — 5 .
(qn— lrn + qn~2) (qn—lan + qn—2) 9a

1
]
t
§
Bl

SR
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Thus,
Pn

qn

—>a as n-—»oo;

but this means that the infinite continued fraction [ae; a1, @2, < ++] has
as its value the given number a.

Thus, we have shown that any number a can be represented by a
continued fraction; this fraction is finite if a is rational and infinite if a
is irrational. It remains for us to show the uniqueness of the expansions
that we have obtained. We note first that uniqueness follows essentially
from the considerations of section 4, Chapter I, where we saw that once
we know the value of a given continued fraction we can effectively con-
struct all its convergents and hence all its elements. However, the re-
quired uniqueness can be established in a much simpler manner. Sup-
pose that

a=lag 6, @y ...1=|a aj, a5 - -],

where the two continued fractions may be cither finite or infinite. Let
us denote by [x] the largest integer not exceeding x. First of all, it is
obvious that ao = [a] and ¢’y = [a], so that ay = d'y. Furthermore, if
it is established that

a,=a, (i=0,1,2 ..., n),
then, in analogous notation,

pi="r

L (=0,1,2, ..., n)

.=

and, on the basis of formula (16) of Chapter I,

7 I4 ’
Pn’n+l+ Pn1 __ [J:,f,,+1+ Pn1 Pn’n.1 + Pn-1
= =77 7 - 7
ann+l+qn—-l ann+l+qn—1 ann+l+qn—l

s0 that, Fny1 = #'ns1. SINCE @ny1 = [Fay1] and @/ny1 = [7/aya], we have
Gns1 = @'y that is, the two fractions coincide completely.

We noté that the above argument would be impossible if we admit-
ted finite continued fractions with the last element equal to unity; if,

for example, a1 = 1 were such a last element, we would have r, =

a, + 1 and a, # [r.]. .
We have just shown that real numbers are uniquely represented by
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continued fractions. The basic significance of such a representation
consists, of course, in the fact that, knowing the continued fraction
that represents a real number, we can determine the value of that num-
ber with an arbitrary prestated degree of accuracy. Therefore, the ap-
paratus of continued fractions can, at least in principle, claim a role
in the representation of real numbers similar to that, for example, of
decimal or of systematic fractions (that is, fractions constructed ac-
cording to soe system of calculation).

What are the basic advantages and shortcomings of continued frac-
tions as a means of representing the real numbers in comparison with
the much more widely used systematic representation? To answer this
question, we need first to have a clear picture of the demands that may
and should be made of such a representation. Clearly, the first and
basic theoretical demand should be that the apparatus reflect as much
as possible the properties of the number that it represents, so that these
properties may be brought out as completely and as simply as possible
each time that the representation of the number by this apparatus
is given.

With respect to this first demand, continued fractions have an un-
deniable and considerable advantage over systematic (and, in par-
ticular, decimal) fractions. We shall gradually see this during the
course of the present chapter. To a degree, in fact, this is clear even
from a priori considerations. Since a systematic fraction is connected
with a certain system of calculation, it therefore unavoidably reflects,
not so much the absolute properties of the number that it represents,
as its relationship to that particular system of calculation. Continued
fractions, on the other hand, are not connected with any system of
calculation; they reproduce in a pure form the properties of the num-
ber that they represent. Thus, we have already seen that the ration-
ality or irrationality of the number represented finds complete ex-
pression in the finiteness or infiniteness of the continued fraction
corresponding to it. As we know, for systematic fractions the corre-
sponding test is considerably more complicated: the finiteness or in-
finiteness of the representing fraction depends not just on the number
represented but also, in a very real way, on its relationship to the
chosen system of calculation.

However, besides the basic theoretical demands that we have men-
tioned, certain demands of a practical nature should naturally be made
for any apparatus that is used to represent numbers. (Some of these
practical considerations may also have certain theoretical value.) Thus,
it is of great importance that the apparatus make it possible and rea-

s et s et we e
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sonably easy to find values that approximate the represented number
with any arbitrary degree of accuracy. The apparatus of continued
fractions satisfies this demand to a very high degree (and, in any case,
better than does the apparatus of systematic fractions). In fact, we
shall soon see that the approximating values given by continued frac-
tions have, in a certain extremely simple and important sense, the
property of being the best approximations.

There is, however, another and yet more significant practical de-
mand that the apparatus of continued fractions does not satisfy at all.
Knowing the representations of several numbers, we would like to be
able, with relative ease, to find the representations of the simpler func-
tions of these numbers (especially, their sum and product). In brief,
for an apparatus to be suitable from a practical standpoint, it must ad-
mit sufficiently simple rules for arithmetical operations; otherwise, it
cannot serve as a tool for calculation. We know how convenient sys-
tematic fractions are in this respect. On the other hand, for continued
fractions there are no practically applicable rules for arithmetical oper-
ations; even the problem of finding the continued fraction for a sum
from the continued fraction representing the addends is exceedingly
complicated, and unworkable in computational practice.

The advantages and shortcomings of continued fractions as com-
pared with systematic fractions determine (to a great extent) the areas
of application of these two representations. Whereas, in computation,
systematic fractions are used almost exclusively, the apparatus of con-
tinued fractions finds its primary application in theoretical investiga-
tions involving the study of the arithmetic laws of the continuum and
the arithmetic properties of individual irrational numbers. The appa-
ratus of continued fractions is an irreplaceable tool for theoretical in-
vestigations, and the prime purpose of all that follows will be its appli-

cation to that purpose.

6. Convergents as best approximations

To represent an irrational number a as an ordinary rational fraction
(to within a specified margin of accuracy), it is natural to use the con-
vergents of the continued fraction representing a. The degree of ac-
curacy of this approximation is given by Theorems 9 and 13 of Chap-
ter I. Specifically, we have

—_ 1 la_& .
92(9n+ qn+1) gn | Qndn+r

wp ot £

i
-
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The problem of approximating irrational numbers by rational frac-
tions consists, in its simplest form, of determining which of the fractions
that differ from the given irrational number by not more than a speci-
fied amount has the lowest (positive) denominator. The problem (stat-
ed in this manner) can be meaningful even in the case in which the
number a is rational. For example, if a is a fraction with an extremely
large numerator and denominator, we may want to approximate this
number by a fraction whose numerator and denominator are smaller.
From a purely practical point of view, there is no real difference be-
tween these two cases (rational and irrational a), since, in practice,
every number is given with only a certain degree of accuracy.

It is immediately clear that the apparatus of systematic fractions is
completely unsuitable for solving this problem, since the denominators
of the approximating fraction that it provides are determined exclusive-
ly by the chosen system of calculation (in the case of decimal fractions,
they are powers of ten); hence, the denominators are completely inde-
pendent of the arithmetic nature of the number represented. On the
other hand, in the case of a continued fraction, the denominators of
the convergents are completely determined by the number repre-
of the convergents are completely determined by the number repre-
sented. We, therefore, have every reason to expect that these conver-
gents (since they are connected in a close and natural way with the
number represented, and are completely determined by it) will play a
significant role in the solution of the problem of the best approxima-
tion of a number by a rational fraction.?

Let us agree to call a rational fraction ¢/b (for & > 0) a best approxi-
mation of a real number a if every other rational fraction with the same
or smaller denominator differs from a by a greater amount, in other
words, if the inequalities 0 < d < 3, and @¢/b = ¢/d imply that

sl —3]

2 Two interesting algorithms for representing irrational numbers were advanced
by M. V. Ostrogradskii shortly before his death. His brief notes on the matter were
discussed on bits of paper in the manuscript depository of the Academy of Sciences
of the Ukrainian SSR. These notes were deciphered in an article by E. Ya. Remez,
“Q znakoperemennykh ryadakh, kotorye mogut byt’svyazany s dvumya algorif-
mami M. V. Ostrogradskogo dlya priblizheniya irratsional’nykh chisel” (“Alternat-
ing series that may be connected with two algorithms of M. V. Ostrogradskii for
approximating irrational numbers”’), Uspekhs malematicheskikh nauk, 6, No. 5 (45),
3342 (1951). As Remez discovered, Ostrogradskil’s algorithms give better approxi-
mations than continued fractions in certain cases. Unfortunately, no detailed study
of these algorithms, even for computational purposes, has as yet been made. (B. G.)
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THEOREM 15. Every best approximation of a number a is a convergent
or an intermediate fraction of the conlinued fraction representing that
number.

PrRELIMINARY REMARK. For this proposition to have no exceptions
it is necessary, as we agreed in section 2, to introduce into our consider-
ations convergents of order —1, by setting p_; = 1 and ¢_, = 0. For
example, the fraction § is, as we can easily verify, a best approximation
of the number }; however, it is not one of the convergents or intermed-
iate fractions of that number, since the set of these fractions (if we
begin with the convergents of order zero) consists of only two numbers,
namely, ¢ and }. However, if we take the fraction § as a convergent
of order —1, this set will consist of

1 0 1 1 1 1

O:T» l: 7:“3"71

thus including the fraction 3.

ProoF. Suppose that a/b is a best approximation of the number a.
Then, first of all, a/b > a,, because if a/b < ao, the fraction ao/1 (be-
ing distinct from a¢/b and having a denominator that is no greater
than b) would lie closer to a than does a/b. Therefore, a/b would not
be a best approximation.

In a similar manner, we can show that

%<00+l.

Thus, we know that @y < (a/b) < @o+ 1. If a/b = aoora/b = a0+ 1,
the conclusion of the theorem would be evident since ao/1 = po/qo is
a convergent and (a0 -+ 1)/1 = (po + p_1)/(go + g-1) is an interme-
diate fraction of a. \
If the fraction a/b does not coincide with any convergent or inter-
mediate fraction of the number a, it must lie between two consecutive
such fractions. For instance, for properly chosen & and r (with 2 > 0,
0<r<arork=0,1<r<a),it will lie between the fractions

} Py Py
' + ' P
and

p(r+1)+p,_,
4, r+D+q, "’
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so that
& prtp,, Pr+D)+p, P+,
b qr+ta,, BQr+D)+q,_, 9r+49,,

1
{G+D+a  {ar+4,_ )
But, on the other hand, it is obvious that
8 P tp
b qr+gq,_,

. m
b+,

where m is a positive integer and hence is at least equal to unity. Con-
sequently,

1 1
Sy T o) ~ G CFVF o iy o]

and hence,

G +D4q <0

P r+D+p,_,
g, r+D+q, "’

with denominator less than d, is closer to the number « than is the frac-
tion

The fraction

(25

P+ Py (26)

"
) 9.+ 9,

(because, in general, from the result of sec. 4, every intermediate frac-
tion is closer to a than is the preceding one) and hence, is also closer
than is the fraction a/b, which lies between expressions (25) and (26).
However, this contradicts the definition of a best approximation, thus
proving Theorem 15.

In the definition of the concept of best approximation, which is at
the basis of this theorem, we evaluated the closeness of the rational
fraction a/b to the number a in terms of the smallness (in absolute
value) of the difference a — (¢/b) (which, of course, is the most natu-
ral procedure). However, it is often more important or convenient in
number theory to examine the difference ba — a, which differs from
the preceding one only by the factor 6. Thus, the smallness of this dif-
ference (in absolute value) can also serve as a measure of the closeness
of the fraction a/b to the number «. This change from one characteris-
tic to another may at first glance seem trivial, and frequently it is.
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However, this is not always the case, as we shall soon see. The signifi-
cant point is that the factor b is not a constant, but is dependent on
the approximating fraction itself, and changes when this fraction is
changed.

Let us now agree to refer to those best approximations mentioned
in Theorem 15 as best approximations of the first kind. Let us further
agree to call the rational fraction a/b (where b > 0) a best approxima-
tion of the second kind of a number a if the inequalities ¢/d # a/b and
0< d < bimply

|da—c¢| > |ba—al.

Best approximations of the second kind are thus defined in terms of
the characteristic |[ba — a| in a manner completely analogous to the
definition of best approximations of the first kind in terms of the
characteristic |a — a/b].

It is easy to show that every best approximation of the second kind
must necessarily be a best approximation of the first kind. For if

omslele—t] (575 4<9)

on multiplying the first of these inequalities by the third, we would
obtain

|da—c|<|ba—a[;

in other words, if the fraction ¢/b was not a best approximation of the
first kind, it could not be a best approximation of the second kind.

The converse is not true: a best approximation of the first kind can
fail to be a best approximation of the second kind. For example, the
fraction % can easily be shown to be a best approximation of the first
kind of the number §. However, that it is not a best approximation of
the second kind is seen from the inequality

|1-%—0’< 34— a<d.

It follows from these remarks and from Theorem 15 that all best
approximations of the second kind are convergents or intermediate
fractions. However—and here lies the fundamental significance of the
apparatus of continued fractions in finding best approximations of the
second kind—we can make a much stronger assertion.

THEOREM 16. Every best approximation of the second kind is a con-
vergent.

REPRESENTATION OF NUMBERS 2§

Proor. Suppose that a fraction a/b is a best approximation of the
second kind of the number

a=|ay a,, a, ...1

whose convergents will be denoted by pi/qs. If a/b < a0, we would
obtain

1-a—gp| <[a—F|<[te—a| (g,

that is, /b would not be a best approximation of the second kind.
Thus, a/b > ao. But then the fraction a/b, if it did not coincide with
one of the convergents, would either lie between two convergents
Pi—1/qk—1 and pet1/ges1, or would be greater than pi/¢,. In the first
case,

& Py, 1
b4, l> bgy_y
and
bl _.’lul <Po_ Ppnr| 1
b g q q i
k-1 ] k-1 U7X Jo
so that
b>qu @27
on the other hand,
a P a 1
o — — > k41 _— ,
617 44y b b4y 4,
and hence, .
|ba——a|> ’

Te41
whereas

1

lqka —p& l < q. »

k+1

so that
(g2 — P, | < |ba—a]. (28)

Inequalities (27) and (28) show that a/b is not a best approximation
of the second kind.
In the second case (that is, if a/5 > p1/q1), we have

_8 b a1
,a bl> 9 bl>b%'

so that
1 1
—aq —_— —
lba |> 9 a,

.
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On the other hand, it is obvious that

“'“"‘aof<”all—r

so that

lba—a|>[1-a—a] AL,
which again contradicts the definition of a best approximation of the
second kind. This proves Theorem 16.

Let us now consider the converse of Theorems 15 and 16. That the
converse of Theorem 15 is false can be seen by considering %, which,
as Is easily shown, is an intermediate fraction for the number a = %,
while it is not a best approximation, since

ESTPIE S TR

There are many more such examples, as the reader can verify for him-
self.
On the other hand, Theorem 16 does have an almost complete con-
verse, which, of course, greatly enhances its value.
Turorem 17. Kvery convergent is « best approximation of the second
kind, the sole exceplion being the trivial cuse of
1 Po o
a = ey A =
ay+ R 0" -
PRELIMINARY REMARK. In the case of a = @y + 4, the fraction
£0/go = ao/1is not a best approximation of the second kind because

[1-a—(@+D]=1|1-a—ay]|.
Proor. Let us examine the expression
lya —x|, (29

where y takes the values 1, 2, <<+ | ¢;, and v can take arbitrary in-
tegral values. We denote by y, that value of y for which expression
(29), after suitable choice of x, takes the smallest possible value. (If
there are several such values of y, we take the smallest of these for y,.)
We denote by x, that value of x at which |y,a — x| attains its mini-
mum. It is easy to sce that this value is unique. For if

%
Yo

(%o # X
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we would have

x0+x(',
2y,

This fraction is irreducible. For if %o+ «'o = Ip and 2y, = lg (with
! > 1), we would have, for I > 2,

©g<y e=%  J@—p|=0
which contradicts the definition of yo; and for ! = 2, we would have

¢ = yoand
lga—p|=|yga —p|=0 <]y — %,

which contradicts the definition of x.

Expanding the rational number a as a continued fraction, we thus
obtain » .
—Pn = /
a=_ P,= %y Xy

qn=2y0=anqn-l +qu—2' an>2’
so that if ¢, > 2 or if ¢, = 2 and % > 1, we have gny < yo. But

1 1 1
an-la_pn—]!="(l';=2_),';'<"2—<Iy0a—xoi'

which contradicts the definition of yo. If # = 1 and a, = 2, we have
a = a9+ % and yo = 1, which is the one exceptional case.

Thus, the values yo and xo are uniquely defined by the given condi-
tions. It directly follows from this that xo/y0 is a best approximation
of the second kind for the number a, since the inequalities

a , X
jba—a| < | ya— xl, j?‘:-)‘,':'» b Y,
would obviously contradict the definitions of xo and y,. From Theo-
rem 16, we therefore have

Xo=Ps Yo=49s (s<R).
If s = &, the theorem is proved. But if s < &, we obtain
1 1 1
a—pl > > — e—pp | < —» —
Iqs psl qs+q:+l = qk—l+qk lqk R , qk+l
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and from the definitions of the numbers p, = xoand ¢, = yo, we would
have

| g2 —ps| <1 qp2 — Py,

so that
1 1
< )
Gat9% = %en

that is,
Q1 <G+ Gr-1s

which is impossible because of the rule by which the numbers ¢x are
formed. This completes the proof of Theorem 17.

Those properties of the apparatus of continued fractions that we
have established in the present section were, historically, the original
reason for the discovery and study of that apparatus. When Huygens
set about constructing a model of the solar system by using toothed
wheels, he was confronted with the problem of determining what num-
bers of teeth for the wheels would give a ratio for two interconnected
wheels (equal to the ratio of their periods of rotation) that would be
as close as possible to the ratio a of the periods of revolution of the cor-
responding planets. At the same time, the number of teeth obviously
could not, for technical reasons, be too high. Thus, Huygens’s problem
was to find a rational number with numerator and denominator not
exceeding a certain bound that would still be as close as possible to
the given number a. (The number a might theoretically be irrational,
but, in practice, it is assumed, in a given case, to be a rational fraction
with very large numerator and denominator.) We have already seen
that the theory of continued fractions provides the means of sol\ving

this problem.

7. The order of approximation

In the preceding section, we were concerned with evaluating the small-
ness of the difference |a — (px/qi)| in comparison with other differ-
ences of the same type. Here, we shall make an absolute evaluation of
this difference. Obviously, the only way of evaluating the smallness
of |a — (pi/qs)| consists in comparing it with some decreasing func-
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tion of ¢¢. To this end, Theorem 9 of Chapter I leads us directly to the
inequality?
Py

U — —

< =7 (30)
'

Therefore, the question must arise as to whether we can strengthen
this inequality, that is, replace its right side with another function
f(gi) of the denominator g that, for all » > 1, would satisfy the in-
equality
1
fm <

It is easy to see that if we want this strengthened form of inequality
(30) to be satisfied for arbitrary a at all values of &, no significant
strengthening in this direction is possible. More precisely, for any
e > 0, we can always find a case for which

p 1—¢
a—-t|>—.
9 'N
To show this, we need only examine the number
n+1

a=I[0; n, 1, nl‘—‘m.
for which, .

=1l q=n py=n+41, gy=n(n—+2),

and therefore,

‘a'—f'—l= —’l—ﬂ-|= ! = 1 3
' a0 0 n(n+42) q%(l_{___n_)
If we now choose # such that
12 > 1l—g,
1+=
we have
a—-—’-"—|>~l——y'—.
N UF

31f a = pi/qe (When Theor. 9 is inapplicable because there is no gey1), inequality
(30) becomes trivial.

b et g o e
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However, if we relax the requirement that the strengthened inequal-
ity be satisfied for arbitrary a at all values of £ (without exception),
we can then obtain a number of interesting and important propositions,
as we proceed to demonstrate.

THEOREM 18. If a number a has a convergent of order k > 0, at least
one of the following two inequalities must hold:

1 1
a—-p—k <——l la—pk__]—l<_'2~—‘t
9 24 9p1 295y

ProOF. Since a lies between pi_1/qe—1 and pi/qx, we have

Py Pry Py pk-l' 1 1 1
o—Priglag Pema)| |\ Pe Peoy| .
9 + Tp % e G9err 245 23,

(The inequality expresses the fact that the geometric mean of the
quantities 1/¢? and 1/¢42_, is less than their arithmetic mean; equality
would be possible only if ¢« = gx—1, which in the present case is ruled
out.) The assertion of the theorem follows immediately.

This proposition is interesting because it has a converse (in a cer-
tain sense).

THEOREM 19. Every irreducible rational fraction a/b that satisfies the
inequality

o= %] <2m

s @ convergent of the number a.

Proo¥F. On the basis of Theorem 16, it is sufficient to show that the
fraction a/b is a best approximation of the second kind of the number a.
Suppose that

1
|da-—c|<,ba—-—a]<.%-
then,

c a\,
(¢>0. F+5):
¢ 1 '
o~ | <ma
and, consequently,

el

a 1 1 __b+d
“_T|<2b_d+2_b"" i - 31

On the other hand, since ¢/d # a/b, we have

¢ a 1
f?‘? >%q-
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Therefore, inequality (31) implies
1 _b+d
%d < %

so that d > b. Thus, the fraction a/b is a best approximation of the
second kind of the number a and Theorem 19 is proved.. _

A further strengthening of Theorem 18 is the following, consider-
ably more profound theorem.

TueoreM 20.4 If a number a has a convergent of order k > 1, al least
one of the following three inequalities must hold:

p 1 l Ppy l !
a— 2| < —, a— 22 < =
9 V 543 Tp1 V S4i-1
Pp_y 1
a— < —= .
Tp—2 V 54;-2

ProoF. Let us define, for £ > 1,

o2
e

LemMa. If k> 2, < v5,and Yy < V'S, then

= g Pp e =y

% >3
PRrOOF. Since
I __ 4 _ (32)
Pn+1 dn-1 a"+ Fn
and
1
Tn== Cn Tt
it follows that !
1 1
=] r,— .
Pn+1 41 (P"+ n="bn

and, from the conditions of the lemma,
— 1 1 -
ot re<V5, §+;<V5,

4 Some simplification of the proof given here appears in the article By I I.‘Zl30gin,
“Variant dokazatel’stva odnoi teoremy iz teoril tsepnykh drobei” ( A variation of
the proof of a theorem in the theory of continued fractions’), Uspekhi matematiche-
skikh nauk, 12, No. 3, 321-322 (1957).

Cm st Mt 4 . e
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so that
= = 1
(V5—€Pk)(1/°—;k‘)>lv :
or, since gy is a rational number,
- 1
5 — —_— .
V3(nte)>0

Then, since ¢x > 0, we obtain

V5 _ .\ 1
(5 —a) <.
and, consequently,
V3 1 5—1
—a<y  w>DEL

which proves the lemma.
Let us now suppose that, in contradiction to our assertion,

1
a— 8> n==%k k—1, kR—2).
From formula (16) of Chapter I, we have
la_&_ — Pafnit+Pnot Do
qn Gnrn+1+ Gn—1 qn

1 1 1

= i 5 = »
U@ iy T 90-))  GaCrpyFo0e)  aban

and, consequently,
Yo <VE  (r=k k—1, k—2).
We conclude, on the basis of our lemma, that

V3i—1 V5—1
Pp > 7 Pr+1 > 5

and hence, because of (32),
2 Vi—-1
— o =1,
%< 75_1 2

ap =

Pr+1
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which is impossible. This contradiction completes the proof of Theo-

rem 20.

Theorems 18 and 20 give the obvious impression of the beginning
of a series of propositions that will admit yet further extension. How-
ever, this impression is erroneous. Consider the number

a=[1; 1, 1, ...].

Assuming, as’ usual, that @ = 1 4+ (1/r1), we obviously have 7, = q,
so that

a=l+%. a?—a—1=x0,
and, consequently,

1475

a= 2 .

Since, obviously, 7, = a for arbitrary #, we have
Pt pyy
a=-t——=222
q‘a + q._l

and, consequently,

Py 1 . 1
a—"‘i; = 9, @3t 9D [
U (“+T
a

But from Theorem 6 of Chapter I, we have

1/ =[;1,1,..., I]»a as koo
a1
so that
q,_ 1 Vi5—1
——L;g =cta=—7g—1¢ (¢, —>0 as k—>o0).
Thus, .
a—fl = = : = == l
q 541 5—1 )
R qi(‘/ + +V2 +=) 9x V5 + 0
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This shows that, no matter what the number ¢ < (1/4/5) may be, for
sufficiently large &, we will obtain

¢
k
0 I>_2, ,

Thus, the constant 1/4/5 in Theorem 20 cannot be replaced by any
smaller constant if we wish the corresponding inequality to be satisfied
for an infinite set of values of z with arbitrary a. For every smaller con-
stant, there exists an a [namely, a = 1(+/5 4 1)] that can satisfy the
required inequality for no more than a finite number of values of &.
Thus, the chain of propositions that begins with Theorems 18 and 20
is broken after the latter theorem, and admits no further continuation.

8. General approximation theorems
Up to now, we have been primarily interested in approximations
given by convergents and have clarified a number of fundamgntal
questions associated with this problem. Since we have scen that the
convergents are best approximations, we may assume that the ob-
tained results will allow us to study, in full measure, the rules that
govern the approximation of irrational numbers by rational fractions,
independently of any particular representing apparatus. We now turn
to problems of this type. It is, of course, impossible (within the frame-
work of the present elementary monograph) to give any sort of com-
plete exposition of the fundamentals of the corresponding theory, part-
ly because of lack of space, but primarily because such an exposition
would have only an indirect bearing on our problem. We shall confine
ourselves to presenting a number of elementary propositions, which will
illustrate the application of continued fractions to the study of the
arithmetic nature of irrational numbers.

The first problem that naturally arises in connection with the results
of the preceding section may be formulated as follows: For what con-
stants ¢ does the inequality

le—2]< 5 @3)

have an infinite set of solutions in integers p and ¢, ¢ > 0, for arbi-
trary real a? The final result of the preceding section leads us to the
following theorem.

TuEOREM 21. Inequality (33) has an infinite sel of solutions in in-
tegers p and ¢ (¢ > 0) for arbitrary real a if ¢ > (1/4/5). However, if
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¢ < (1/4/5), inequality (33) will, for suilably chosen a, have only a
finite number of such solutions.

The first assertion is an immediate consequence of Theorem 20. (In
the case in which a is a rational number a/b and, therefore, has only a
finite number of convergents, the first assertion of Theorem 21 can be
proved in a trivial manner by setting ¢ = #nb and p = na, forn = 1,
2,3, +++). Suppose, then, that ¢ < (1/4/5). As in section 7, let us set

=i 11,

If two integers p and ¢ (¢ > 0) satisfy inequality (33), Theorem 19
tells us that p/q is a convergent of the number a. But we saw at the
end of section 7 that only a finite number of these convergents satisfy
inequality (33) under our hypothesis that ¢ < (1/+4/5). This proves
our assertion.

Thus, in general (that is, if we consider all possible real numbers a),
the order of approximation characterized by the quantity 1/(1/5¢%)
cannot be improved. (The term ““order of approximation” refers to that
magnitude of error within which a suitable estimate can always be
found.)® This does not mean that there are no individual irrational
numbers for which approximations of much higher order are possible.
On the contrary, the possibilities in this direction are boundless—a fact
that is most easily shown by the apparatus of continued fractions.

THEOREM 22. For any positive funclion ¢{(q) with natural argument g,
there is an irrational number a such that the inequality

la—~%\<<?(4)

has an infinite number of solutions in integers p and q (.q > 0).

Proor. Let us construct an infinite continued fraction a b){ choos-
ing its elements successively in such a way that they will satisfy the
inequalities

1
Q> 55— (k> 0).
S PITN)

This, of course, can be done in an infinite number of ways. Here, ao can
be chosen arbitrarily. Then, for any & > 0,

1 1
a2t = S = < ¢(qa)
%l Bl %Gt %) Bl
which proves the theorem.

§ Translation editor’s note.
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We now note that, in the most general case, the inequalities

1 ¥4 1
< |a—E |
9% (et 9p40) % |~ %fen
or, equivalently,
1 1
) O 'a_%— < q
2 k=1 k ) -
0 (ak+‘+l+T) %4“14'—71.—'-
imply
1 P 1
—_—< ’“—- e , (34)
9 (%4 T2) % 93341

from which it is clear that, for given ae, ai, *++ , @i, the greater the
subsequent element a4 is, the more closely the fraction pi/gx will
approximate the number a. And since the convergents are, in all cases,
best approximations, we arrive at the conclusion that those irrational
numbers whose elements include large numbers admit good approxima-
tion by rational fractions. This qualitative remark is expressed quan-
titatively in inequality (34). In particular, irrational numbers with
bounded elements admit the worst approximations. Thus, it becomes
clear why we have repeatedly chosen the number

ﬂ§i=nn,L”4

when we wished to exhibit an irrational number that did not admit
approximations of higher than a fixed order. Of all irrational numbers,
this clearly has the smallest possible elements (excluding ao, which
plays no role here) and hence is the most poorly approximated by ra-
tional fractions.

Those approximating properties that are peculiar to numbers with
bounded elements are completely expressed in the following proposi-
tion, which, after what has already been said, is almost obvious.

THEOREM 23. For every irrational number o with bounded elements,
and for sufficiently small ¢, the inequalily

— ﬂ‘ £
Ia <7
has no solution in integers p and q (g > 0). On the other hand, for every

number a with an unbounded sequence of elements and arbitrary ¢ > 0,
inequality (33) has an infinile sel of such solulions.
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In other words, irrational numbers with bounded elerﬁents admit
an order of approximation no higher than 1/¢%, while every irrational
number with unbounded elements admits a higher order of approxima-
tion.

_Proor. If the set of elements of the continued fraction representing
a is not bounded above, then for arbitrary positive ¢ there is an infinite
set of integers & such that
‘ 1
Qg1 > 7
and, cgnseq}lently, on the basis of the second of the inequalities in (34),
there is an infinite set of integers % such that

c

_2_,
9r

Py

R ——

9

<

which proves the second assertion of the theorem. If there exists an
M > 0 such that

8, < M k=1, 2,...),

then, on the basis of the first of the inequalities in (34), we have, for
arbitrary £ > 0,

1
a—Pr

9, | M+

.Now let p and ¢ be arbitrary integers (¢ > 0), and let £ be deter-
mined by the inequalities

-1 <9< G,
Then, since all convergents are best approximations of the first kind,
1
74 (M+2)

p

oL L3

> >

9

_ 1 g\? ! %\’
A LES) (qj) >q2(M+2)( 7, )

— ! Te-1

T M+ (aqu—l+qk~2)

> 1 . 1 > 1
PTG IR MFYMF g
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Thus, if we choose

1
C<IFHIHFR’

inequality (33) cannot be satisfied for any pair of integers p and ¢
(g > 0). This proves the first assertion of the theorem.

Up to this point, we have always evaluated the closeness of an ap-
proximation in terms of the smallness of the difference a — (p/9);
however, we might have considered instead the difference ga — p (as
in sec. 6), making the appropriate changes in the formulation of all
the theorems. This simple observation leads directly to a certain new
and extremely important aspect of the problem that we are studying.

The simplest homogeneous linear equation with two unknowns ¥

and y, namely,

ax —y=0, (35)

where a is a given irrational number, obviously cannot be exactly
solved in whole numbers (except, of course, in the trivial case of

= y = 0). However, we may pose the problem of obtaining an ap-
proximate solution, that is, of choosing integers x and y for which the
difference ax — y is sufficiently small (that is, less than a preassigned
amount). Obviously, all the preceding theorems of this section can
be interpreted as confirmation of the rules governing this kind of ap-
proximate solution to equation (35) in whole numbers. Thus, for ex-
ample, Theorem 21 shows that there always exists an infinite set of
pairs of integers x and y (x > 0), such that

C
]ax—-yl(-;, (36)

for any positive C greater than or equal to 1 /5.
With this approach, it is natural to pass from the homogeneous equa-

tion (35) to the non-homogeneous equation
ax—y="H @37)

(where 8 is a given real number) and to investigate the existence and
nature of its approximate solutions in integers  and y (in other words,
to investigate the principles involved in attempting to make the dif-
ference ax — y — B as small as possible by a suitable choice of integers
x and y). This problem was first posed by the great Russian mathe-
matician P. L. Chebyshev, who obtained the first basic results cons
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nected with it, and has been the subject of continued intensive study
especially by the Soviet arithmetic school. ’
The first basic feature distinguishing the non-homogeneous case
from the homogeneous one is that it is possible to make the quantity
|ax — y — B| arbitrarily small for arbitrary 8 by a suitable choice
of x and y only if the number a is irrational (whereas, in the homogene-
ous case, the quantity |ax — y| can be made arbitrarily small for
any'a). In fact, if a = a/b, where & > 0 and a are integers, then, by
setting 8 = 1/2b, we obtain, for arbitrary integers x and y, ’

v A — 2(ax—by)—1 1
'GX y pl— 26 }'27:

sm.cte |2(ax — by) — 1|, being an odd integer, is at least equal to
unity.

.Thus, in all that follows, we shall assume a to be irrational. With
this understanding, we shall now show that not only is it also possible
to make the quantity |ax — y — B] arbitrarily small, but the analogy
with the homogeneous case can be extended considerably further.

THE.OREM 24 (Chebyshev). For an arbitrary irrational number o and
an arbilrary real number B, the inequality |ax — y — B| <3/x has an
infinile set of solutions in integers x and y (where x > 0).8

PRELIMINARY REMARK. Obviously, this result is completely analo-
gous to 'the corresponding problem for homogeneous equations, ex-
pressed in Theorem 21. The difference consists only in the fact ’that
here, instead of 1/4/5, we have 3. The order of the approximation is
t!le same as before. We note also that the number 3 is not the best pos-
sible and that the exact value of the greatest lower bound of the set of
numbers'that would verify Theorem 24 is considerably less than 3.

Proor. Let p/g be an arbitrary convergent of a. We then have

3
“=§ rd O<I3) <1y (38)

also, for any real 8, we can find a number ¢ such that
lop—t]< <,

. * A simple proof of a somewhat stronger theorem is found in Khinchin’s article
Printsip Dfnkhle v teorii diofantovykh priblizhenif” (“‘Dirichlet’s principle in thé
theory of Diophantine approximations”), Uspekhi matematiche skikh nauk, 3, No. 3
g);—IbS (111948). f‘urther refinements are contained in Khinchin’s article, “O zadache:
ebysheva” (“On a problem of Chebyshev’’), Izvestiya akad. ,k
matem., 10, 281-294 (1946). (B. G.) ¢ nout 35K, ser
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so that
t 3 ’
p=7+2 ([, (39)

Since p and ¢ have no common divisors other than + 1, there exists
a pair of integers x and y such that

3
T<x< .

7 px —qy=t.

For if 7/s is the convergent immediately preceding /4,
gr—ps=ce¢= =1, g(erty—p(sst)y =t = ¢,
and for an arbitrary integer &,
p(kqg—est)—q (kp—cert) =1,
but & can be chosen so that

3q
igx.—.kq-—sst<-§'-

2
Then, on the basis of equations (38) and (3()),,
Jax—y—pl=|2L4+ 5 —y—C—5
g -gl<i
and since
q> %x,
we hf‘sve

9 3 3
lax —y—Bl< g +5=%"

Finally, since ¢ can be chosen arbitrary large and since x 2 q/2, it
follows that x can be arbitrarily large. This proves the the(?rem. .
But the problem of an approximate solution to equation (37) in
whole numbers can be put in a different, and somewhat more natural,
form. Since the crux of the problem is to make the quantity |ax —
y — B] as small as possible with as large integra} values of x‘and y as
possible, it is most natural to state the problem in .tl.le following man-
ner. We know (from Theor. 24) that, for any positive number » (no
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matter how large), any irrational number a, and any real B, we can
find integers x > 0 and y satisfying the inequality

|ax—y—[i|<-'17. (40)

However, Theorem 24 does not generally give us any information as
to the limits within which we should seek these numbers so as to attain
the required accuracy, characterized by the quantity 1/x. This might
be achieved, for example, if we could exhibit some number N , depend-
ent on #, but independent of a and B, such that inequality (40) would
always be satisfied under the additional condition that

[x] < N.

This new statement of the problem is obviously quite different from
the original one. Whereas formerly (as in Theor. 24) the accuracy of
approximation was determined by the value of x, we now wish to fix
this accuracy in advance and see how large a value of x we should
choose to attain this accuracy. The solution to the problem is signifi-
cantly altered by this difference in its statement. Specifically, we obtain
quite different results in the homogeneous and non-homogeneous cases.

In the case of a homogencous equation (8 = 0), the stated problem
has a very simple solution.

THEOREM 25. For all real numbers n > 1 and a, there are inlegers
x and y salisfying the inequalities

1
0<xn, Jax—yl< R
Proor. If a is a rational number, a/b, such that 0 < b < %, the

conclusion is immediate for x = b and y = q. If a either is irrational
or has a denominator exceeding #, we define £ by the relationship

9 <N < g1y

(where pi/q: denotes the kth-order convergent of a) and obtain
P, 1 1

a—D| 1 L
%l 9%%n < [

so that
1
Iaqk-pkl<;’ 0<qk<n.

which proves the theorem.
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Now, we naturally ask whether we may obtain the same order of
approximation in the case of the non-homogeneous equation (37). In
other words, may we assert that, for any irrational number a, a positive
number C can be found such that, for any n > 1 and 8, there exist
integers x and y satisfying the inequalities '
(Clearly, we are now asking even less than for the homogeneous case,
since we are allowing C to depend on a, whereas in the homogeneous
case, C = 1 was an absolute constant.) It is easy to give certain a priori
arguments against the possibility of such an assumption. First, for ra-
tiona] a, it is clearly untrue, since, as we have seen, the quantity
|ax — y — B| cannot in general (that is, with arbitrary 8) be made
arbitrarily small. This leads us to expect that if a is irrational (but is
approximated extremely closely by rational fractions), the quantity
lax — y — B, even though it can (on the basis of Theor. 24) be made
arbitrarily small, requires comparatively large values of ¥ and y to
accomplish this with a suitably chosen value of 8. These considerations
also lead us to suppose that the more poorly the number a is approxi-
mated by rational fractions (that is, the more difficult it is to make the
quantity ax — y approach zero), the easier it will be to have the dif-
ference ax — y approach an arbitrary real number 8. As we know, this,
in turn, requires that the elements of the number a not increase too
fast. All these preliminary considerations are expressed precisely in the
following theorem.

THEOREM 26. For the existence of a posilive number C with the prop-
erty that, for arbitrary real numbers n > 1 and B, two inlegers x and y
(x > 0) exist satisfying the inequalilies

x < Cn, |ax—y—Bl<%.

it is necessary and sufficient that the irrational number a be represented
by a continued fraction with bounded elements.

PrOOF. Suppose that a = [g; a1, a2, +++], that a; < M (for i =
1,2, +++), that m > 1, and that 8 is an arbitrary real number. De-
noting by pi/gx the convergents of the number a, we can determine
the subscript k from the inequalities

<M <ggeis
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then,

1 1
N1~ ™4,

or

P 3
“=7]f+m; (I3[ ). (41)

We now choose an integer ¢ such that

lplh“t'<—2l‘.

so that
b=ato (VI
7, T, < D. (42)
Finally, as in the proof of Theorem 24, we find a pair of i
satisfying the relationships ’ parotintegers randy
e — Y=t 0 xLq,. (43)
It follows from (41), (42), and (43) that
X ¢ 3 ’
Jox—y—pl=| Py L4 2
% %

mg, g,

L ¥ < x 1 1 1 g,
= v 20 +1
My 2, " mg, + 24, <wT 29441 ( s )
1, 1, M+1_ M
Swtam @Gt <o+ S =51

Up to now, the number m > 1 has been completely arbitrary. If
we now Sf)t m = 5(M 4+ 3)n for given n > 1, we shall obviously have
m > 1. Consequently, from what was stated above, if we choose the
numbers x and y as indicated, we have

0<x<g<m=Mt3,

lax—y—gl <+,

which proves the first part of the theorem.

To prove the second part, let us suppose that the set of elements a;
of the number « is unbounded above. Theorem 23 than indicates that,
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in this case, for any positive number e there arc integers ¢ > 0 and p
satisfying the inequality

_p|_ £
Ia ql<q"

so that

2
a:L+B—€_

We now set n = ¢/eand B = 1/2q. Then, for arbitrary integers x and y
(with 0 < x < (Cn), we obtain
xp 1 x%¢?
ax—y—B|l=|~%—y—5 bl
| y pl 7 y Qq'f" e 7
S 20p—yp =1l _x 1 Ce  1—2Ce 1-2Ce 1
2q ¢ 72 ¢  2¢ T T 2% n

_|2¢p—yp—1 | xde?
_ , 29 +

But no matter how large C may be, for sufficiently small ¢, we shall
have [(1 — 2Ce)/2¢] > 1, and, consequently, for arbitrary integers x
and y (with 0 < x < Cn), we obtain

1
[ax——y—[3|>;,

which proves the first part of the theorem.

Let us review the results that we have obtained. In investigating
the approximate solutions to equation (37) in whole numbers, we must
examine as a “‘normal” case the one in which the accuracy character-
ized by the quantity 1/x can be attained for arbitrary # > 1 at some
x < Cn, where C is a constant (possibly depending on a). A homogene-
ous equation (obtained for 8 = 0) always has a normal solution (Theor.
25). Theorem 26 shows that the general (non-homogeneous) equation
has a normal solution if, and only if, the corresponding homogeneous
equation has no *‘supernormal’ solution (that is, if it is impossible to
satisfy the homogeneous equation with integers x > 0 and y such that
x < en for arbitrary ¢ > 0 and properly chosen n, with an accuracy
of 1/n). From this point of view, the results of our investigation can
be regarded as a variation of the general law concerning the solution
of linear equations (algebraic, integral, etc.): I'n the general case, a non-
homogeneous equation can be solved ‘“‘normally” if the corresponding homo-
geneous equalion has no ‘‘supernormal” solution.

We note also that in Theorem 26 we required that C be independent
of B. The same result would hold if we allowed C to be a function of 3,
but the proof (second part) would be somewhat more complicated.
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9. The approximation of algebraic irrational numbers
and Liouville’s transcendental numbers

Suppose that
fX)=ay+ax+ ... +a,x" (44)

is a polynomial of degree n with integral coefficients ay, a1, << , a,.
Then, a root; a, of this polynomial is said to be algebraic. Since every
rational number a = a/b can be defined as the root of the first-degree
equation bx — a = 0, the concept of an algebraic number is clearly a
natural generalization of the concept of a rational number. If a given
algebraic number satisfies an equation f(x) = 0 of degree », and does
not satisfy any equation of lower degree (with integral coefficients),
it is called an algebraic number of degree n. In particular, rational
numbers can be defined as first-degree algebraic numbers. The num-
ber 4/2, being a root of the polynomial »* — 2, is a second-degree alge-
braic number, or, as we say, a quadratic irrational. Cubic, fourth-de-
gree, and higher irrationals are defined analogously. All non-algebraic
numbers are said to be ¢ranscendental. Examples of transcendental
numbers are e and . Because of the great role that algebraic numbers
play in contemporary number theory, many special studies have been
devoted to the question of their properties with regard to their approxi-
mation by rational fractions. The first noteworthy result in this direc-
tion was the following theorem, known as Liouville’s theorem.

THEOREM 27. For every real irrational algebraic number a of degree n,
there exists a positive number C such that, for arbitrary integers p and q
(¢ >0),

_r|s C
'a q[>q"'

Proo¥r. Suppose that a is a root of the polynomial (44). From alge-
bra, we may write

fx)=(x—a) f,(x), (49)

where fi(x) is a polynomial of degree n — 1. Here, fi(a) # 0. To show
this, suppose that fi(a) = 0. Then, the polynomial fi(x) could be
divided (without a remainder) by x — a and, hence, the polynomial
f(x) could be divided by (x — a) But, then, the derivative f’'(x) could
be divided by x — a; that is, we would have f'(a) = 0, which is im-
possible since f’(x) is a polynomial of degree » — 1 with integral co-
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efficients and « is an algcbraic number of degree #. Hence, fi(a) 7 0,

and, consequently, we can find a positive number 6 such that
fix)+0 @—3LxLa+4d).

Suppose that p and ¢ (¢ > 0), are an arbitrary pair of intégers. If
la — (p/¢9)| < 8, then fi(p/¢) # 0, and, by substituting x = p/q in
identity (45), we obtain

O I L )
I TG

— %" tapg" '+ ... +aup”
q"f (%)

The numerator of this fraction is an integer. It is also non-zero, be-
cause otherwise we would have a = p/g, whereas a is by hypothesis
irrational. Consequently, this numerator is at least equal to unity in
absolute value. We denote by M the least upper bound of the function
fi(x) in the interval (a — 6, a + 8). From the last inequality, we thus
obtain

'a—£’> Mg™*

e

In the event that

p! N
o — £
o=t [
it follows that
)
o= 5 |> 5

and if we now denote by C any positive number less than 8 and 1/M,
we obtain, in both cases (that is, for arbitrary ¢ > 0 and p),

-3l

which completes the proof of Theorem 27.

Liouville’s theorem shows that algebraic numbers do not admit ra-
tional-fraction approximations of greater than a certain order of ac-
curacy (this depending basically on the degree of the algebraic number
in question). The main historical importance of this theorem consisted
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in the fact that it made possible the proof of the existence of transcen-
dental numbers, and enabled one to give specific examples of such
numbers. As we have seen, to do this, it is sufficient to exhibit an irra-
tional number for which rational fractions give extremely close approxi-
mations, and theorem 22 shows that the possibilities for this are un-
limited.

Specifically, Theorem 27 shows that if for arbitrary C > 0 and arbi-
trary natural n there exist integers p and g(g > 0), such that

gl S

then the number a is transcendental. Using the apparatus of continued
fractions, it is very easy to exhibit as many such numbers as we desire.
All that is necessary is to choose elements @o, a1, *+- , ax, form the
convergent pi/q¢, and take

k-1
e >

since then
Py 1 1 1
@ — -(1_. < 2, < kel °
k N1 D% N

As a result of the above, inequality (46) is obviously satisfied for suffi-
ciently large values of k£, no matter what C > 0 and natural » may be.

10. Quadratic irrational numbers and periodic
continued fractions

Theorem 27 shows that, for any quadratic irrational number a, there
exists a positive number C, depending on a, such that the inequality

p—3l<$

has no solution in integers p and g(¢ > 0). From this and from Theo-
rem 23, it follows that the elements of every quadratic irrational num-
ber are bounded. Long before Liouville, however, Lagrange had dis-
covered a much more significant property of the continued fractions
representing these irrationals (one that is even more characteristic of
them). It turns out that a sequence of quadratic irrational elements is
always a periodic sequence and, conversely, that every periodic con-
tinued fraction represents some quadratic irrational number. The pres-
ent section is devoted to a proof of this assertion.
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Let us agree to call the continued fraction
a=lay; a, a,, ...|

periodic if there exist positive integers ko and % such that, for arbi-
trary k > ko, ’

Crin= Qg

In analogy with the procedure for decimal fractions, we shall indicate
such a periodic continued fraction as follows:

a=[ay @, G ..., Gr-1. Gry Bkyils -+, Bryrn-1). (47)

TuEOREM 28. Every periodic continued fraction represents a quadratic
irrational number and every quadratic irrational number is represented
by a periodic continued fraction.

Proor. The first assertion can be proved in a few words. Obviously,
the remainders of the periodic continued fraction (47) satisfy the rela-
tionship

Fern ="y (k> k).

Therefore, on the basis of formula (16) of Chapter I, we have, for
k> ko,

w oo et Phy _ PuinoiTrien Pron-y_ Pran-iTet Pasns

Gete T D2 TprnrTren T %in-2 TovnrTat Toen—2
(48)
so that
PoifetPoy _ PrinaTet Prin-g
Gr’e T2 Teon1"et 9ern—2

Thus, the number 7, satisfies a quadratic equation with integral co-
efficients and, consequently, is a quadratic irrational number. But, in
this case, the first inequality of (48) shows that a too is a quadratic
irrational number.

The converse is somewhat more complicated. Suppose that the num-
ber a satisfies the quadratic equation

aa?+ ba 4+c=0 (49)
with integral coefficients. If we write a in terms of its remainders of
order n g == Pn=1n + Pn-2

T Gu-1rntGn-2
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(again using eq. {16] of Chap. I), we see that 7, satisfies the equation
Agrat Bur,+Co=0, (50)
where .1, B, and C, are integers defined by
A,=ap, +bp, 9, ,+ qy_,
B,=2ap, \Pp_gHb(Paorfn-3FHPn-29n-0Ft260n-19n-2 ( (51)

C,=ap’_,+bp, 4, ,+ @, _,, J
from which, in particular, it follows that
Cn = An—l' (52)

With these formulas, it is easy to verify directly that
Bi—4A,C, = (b>—48c) (Py_ 19y -3~ Jn-1Pn-2)* = b*—4ac, (53)

that is, that the discriminant of (30) is the same for all # and is equal
to the discriminant of (49). Furthermore, since

o — Pn—-1 21 ,
9ps qn-1
it follows that
b,
Pn-1=°“ln~1‘+“q‘ﬁ_—: (|8, ] < 1);

therefore, the first formula of (51) gives us

3,-1\2 8,
A, = a(aqn—l+7:':—_—:_) +b(“qn—1+ q:_ll )qn——12+ g,
[
= (aa+bat-0)g}_,+20a8,_+a =40,

n-1
from which, on the basis of (49), we have

b1
| Ay =| 2088, 143 =2 < 2|aal 4|al+]b]
n-1

88,

and, on the basis of (52),
IC,l=14,,1< 2|aa|+|a| |0
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Thus, the coefficients 4, and C, in (50) arc bounded in absolute
value and hence may assume only a finite number of distinct values as
n varies. It then follows on the basis of (53) that B, may take only a
finite number of distinct values. Thus, as » increases from 1 to «, we
can encounter only a finite number of distinct equations in (50). But,
in any case, r, can take only a finite number of distinct values, and
therefore, for properly chosen £ and 4,

Te = Tk+n
This shows that the continued fraction representing a is periodic and
thus proves the second assertion of the theorem.

No proofs analogous to this are known for continued fractions repre-
senting algebraic irrational numbers of higher degrees. In general, all
that is known concerning the approximation of algebraic numbers of
higher degrees by rational fractions amounts to some elementary corol-
laries to Liouville’s theorem, and certain newer propositions strength-
ening it. It is interesting to note that we do not, at the present time,
know the continued-fraction expansion of a single algebraic number of
degree higher than 2. We do not know, for example, whether the sets
of elements in such expansions arc bounded or unbeounded. In general,
questions connected with the continued-fraction expansion of algebraic
numbers of higher degree than the second are extremely difficult and
have hardly been studied.

Chapter 111

THE MEASURE THEORY OF
CONTINUED FRACTIONS

11. Introduction

In the course of the preceding chapter, we saw that real numbers can
be quite different in their arithmetic properties. Besides the basic di-
visions of the real numbers into rational and irrational or algebraic
and transcendental numbers, there are several considerably finer sub-
divisions of these numbers based on a whole series of criteria charac-
terizing their arithmetic nature (most importantly, criteria involving
the approximation by rational fractions that these numbers admit).
In all these cases, we have, up to now, been content with simple proofs
that numbers having certain arithmetic properties actually do exist.
Thus, we know that numbers exist admitting approximation by ra-
tional fractions of the form p/q with order of accuracy not exceeding
1/¢* (for example, all quadratic irrational numbers); but we also know
that there exist numbers admitting approximation of much higher
order (Theor. 22, Chap. II). The following question naturally arises:
which of these two opposite properties should we consider the more
“general,” that is, which of these two types of real numbers do we “en-
counter more often’’?

If we wish to give a precise formulation of the question just posed,
we must remember that each time we refer to some property or other
of the real numbers (for example, irrationality, transcendentality, pos-
session of a bounded sequence of elements, etc.), the set of real num-
bers is partitioned with respect to that property into two sets: (1) the
set of numbers possessing that property, and (2) the set of numbers not
possessing it. The question is then clearly reduced to a comparative
study of these two sets, with the purpose of determining which of them
contains more numbers. However, sets of real numbers can be com-
pared with each other from various points of view, and in terms of
various characteristics. We can pose the question of their cardinality,
of their measure, or of a number of other gauges. As regards both meth-
ods and results, the study of the measure of sets of numbers defined by

51
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a given property of their elements has proven the most interesting.
This study, which we shall call the measure arithmetic of the continuum,
has undergone considerable development in recent years, and has led
to a large number of simple and interesting principles. As with every
study of the arithmetic nature of irrational numbers, the apparatus of
continued fractions is the most natural and the best investigating in-
strument. However, to make this apparatus an instrument for measure
arithmetic (that is, to apply it to the study of the measure of sets whose
members are defined by some arithmetic property), we must first sub-
ject the apparatus itself to a detailed analysis from all aspects. We
must, in other words, learn to determine the measure of numbers
whose expansions in continued fractions possess some previously stated
property. Questions of this kind can be quite varied: we may inquire
about the measure of the set of numbers for which @, = 2, or for which
qio is less than 1,000, or which have a bounded sequence of elements,
or which have no even elements, and so on. The methods used in solving
problems such as these constitute the measure theory of continued frac-
tions. It is to the fundamentals and the elementary applications of this
theory that the present chapter is devoted.

Since the addition of an integer to a given real number does not
change the fundamental properties of that real number, we shall hence-
forth confine ourselves to an examination of the real numbers between
zero and one; that is, we shall always assume that ¢y = 0. Such a re-
striction to a finite interval is necessary in measure theory if we do not
wish the measure of a set, in the genceral case, to be infinite. We are
assuming that the reader is familiar with the basic propositions of
measure theory.!

12. The elements as functions of the number
represented
Every real number a has a unique expansion as a continued fraction
a=[ay a,, ay ...

each element a, is therefore uniquely defined by the number a; that is,
it is a single-valued function of a:

a,=a,(a).

! The material contained in any text on functions of a real variable will be more
than sufficient for understanding this chapter.
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To develop the measure theory of continued fractions, we must first
study the properties of this function and obtain a general picture of its
behavior. The present section is devoted to this problem. '

As we noted in section 11, we are henceforth assuming that ao = 0.
For simplicity in notation, we shall always write

a=|a,, a, ...]
instead of
a={ay a, a; ...].
Thus,
1

a +

[al, 02, .. .]=

a,—f— "o

Let us begin by examining the first element a, as a function of a.

Since
1 1
;_al+ag+...’

it is obvious that ¢, = [1/a], that is, g, is the greatest integer not ex-
ceeding 1/a. Thus,

o=1, forl<tca e, g<agl,

a,=2, for 2L—-<3; i.e.,%<a<%.

Q|

. 1
< 4; ie., %<a<—3—, etc.

R |-

a, == 3, for 3 é
In general,

x| —

1 . 1
a, =k, for k<;<k+1: le., m<°~<

The function @, = a,(a) thus has a discontinuity at all those values of a
for which 1/a is an integer, and it increases without bound as « ap-
proaches 0. Figure 1 gives a graphical representation. We note that a,
is constant throughout each of the intervals

1 1
FrT <e< %
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We shall call these intervals infervals of the first rank. We note also that

1

fa,(a)da:—}— 0,

0

since this integral is obviously equivalent to the divergent series
1
2"(7‘“ k+1>—2 E+1°
k=1 k=1

ay(a)

Y

al
B

[
N

Fic. 1

Let us now examine the function as(a), first considering some fixed

interval of the first rank:

1 1
i <<%

In this interval, a; = k everywhere and, consequently,
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where 1 < 7, < © and a; = [r2]. As 72 increases from 1 to ©, a in-
creases from 1/(k + 1) to 1/k, thus taking all values in the given in-
terval of the first rank. It is then obvious that

g=1, for 1<r,<2; ie, 7_1*_—-1—<a< L
k-t
. . . 1 1
a,=2, for 2.Lry<3; ie., << T
k+§- k+§'
1
a,=3, for 3Lr,<4; ie., _1T<a< T
ktg k+g
and, in general,
1
G=1, for I<r,<ld+1, ie, —p<a<—7
k+7 k+1_+'l

Thus, in this fixed first-rank interval, the graphical representation of
the function @s(a) has the form shown in Figure 2.

a, («)
4

~
Y

-
EF
3‘]_

F16. 2
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The function as(a) is constant in cach of the intervals

1 1
1’ 1 !
( S E )
which we shall call intervals of the second rank. Every interval of the
first rank can consequently be partitioned into a countable set of in-
tervals of the second rank, going from left to right. (We recall that in-
tervals of the first rank form a sequence going from right to left.) The
set of points at which a; = k is an interval of the first rank. The set of
points at which a; = /is a countable set of intervals of the second rank
(one in each of the intervals of the first rank). Each interval of the
first rank is defined by a condition of the form ¢, = k, and each in-
terval of the second rank by conditions of the form ¢, = &k, a2 = [
Suppose that we have defined all intervals of rank » and that we
are investigating the set of functions a,(a), ¢s(a), =+, a.(a). Each
system of values
ay=ky, G=ky ..., 8=k, (54)

defines some interval J, of rank n. To investigate the behavior of the
function @,41(a) in the interval J,, we note that an arbitrary num-
ber a of this interval may be represented in the form

a=[ky, Ry ..., Ry Tyl (55)

where 7,1 takes all possible values from 1 to . Conversely, for arbi-
trary 7,1 (where 1 < 7,4 < ®), the expression (55) gives us the num-
ber a for which conditions (54) are satisfied and which consequently
belongs to the interval J,. Since @ay1 = [7a41], we see that in each in-
terval of rank #, the function @,41(a) assumes all the integral values
from 1 to . To draw a more exact picture, let us agree to denote the
convergents of the number a, as usual, by pi/¢«. Then,

o= Pnfnir+ Pni

Il n+1t+4n-1’

where 7,4, increases from 1 to @ as a runs through the interval J,.
The numbers pn, g, pn-1, ¢a—1 remain constant, since they are com-
pletely determined by the numbers ay, a2, *++ , s, cach of which has
the same value for all points of the interval J,. In particular, by setting
7241 = 1 and then letting 7,41 — ©, we obtain as end points of the

interval J, the points
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Pnt Pn-i Pn .
9n+ qn-1 and -q;’
and since
a__p_nz_Pnrn+l+Pn~l_£g___ (="
qn Gnln+1+ Gn-1 4n  9n@nfner +qn-0)’

a is a monotonic function of 7,4, in the interval (1, ). Conversely,
r.+1—and hence, d,41—is a monotonic function of « in the interval

J =P, Pn+Pn——|),
n (qn Gntan-1 )’

thus, as a runs through the interval J,, the function a.4,(a) takes, in
succession, the values 1, 2, 3, -+ | partitioning the interval J, into
a countable set of intervals of rank 7 + 1. This sequence is taken from
right to left for even n and from left to right for odd ».

Thus, the function a,(a), at least qualitatively, is completely de-
fined. Let us agree to call the interval (0, 1) the (unique) interval of
rank zero, and let us cover it with a net of finer intervals, placing in
cvery already constructed interval of rank n a sequence of intervals
of rank »n + 1. This sequence is taken from right to left if n is even
and from left toright if # is odd. The function g,;1(a) (forn = 0, 1, 2,
+++) is constant in each of these intervals of rank » + 1. This func-
tion is monotonic and takes all integral values from 1 to « in each
interval of rank 7. To each system of values

alzkl’ a2=k2, “ ey an=ku

there corresponds a uniquely defined interval of rank =, and vice versa.
The more general system of values

Am, =Ry, Am, = ky, ..., am = ks
determines, generally speaking, a countable set of intervals.

The first question posed by the measure theory of continued frac-
tions naturally consists in determining the measure of the set of those
points of the interval (0, 1) for which a, = k. We already know that
this set is a union of disjoint intervals. It is then a question of evaluat-
ing the sum of these intervals. A first approximation to the solution of
this problem is obtained quite easily.

From here on, let us agree to denote by

”h ”2, ey
E( )
kh kzp PR kS
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the set of points of the interval (0, 1) for which the following conditions
are satisfied:

an, =k, Gn,=ky ..., Qo =Kk

here, of course, all the n; and &; are natural numbers and the #; are
all different from each other. We already know that such a set is al-
ways a union of intervals. In particular, the set

1, 2,..., n)
E(kl, ko s ki

is, as we know, an interval of rank », characterized by the relationships

a, =k =12, ..., n).
Obviously, we always have
[e o]
Z E(nh..-v ni—yn Ay ”l+|: ve ey ns)
P Riveeur Ricto Ry Rpgneooos R (56)

____E(nh oo Moy Mg eon ”s)
- kh-'-’ k[-—h kl-}-]v.--; ks

Finally, let us agree to denote by IRE the measure of the set E. Let
us consider an arbitrary interval

J,,=E(l' 2 .0 n)

k]n kz; ey kn

of rank # containing the interval

L, 2, ....n n+l
Hin=E( )
i ki koo kS
of rank n + 1. We already know that the end points of the interval J,

are the points
Pn

n
and
PntPnoy
dn + dn-1
where p./qi denotes the convergent of order k of the continued fraction

(), kg . oo0 Ryl
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On the other hand, for all points of the interval J,,,®, we have
G =Irpl==s,
and hence,
Sy <s—+1.
Thus, among all the points

: — Pnln+1+ Pn_\

a
o' n+1+ 9n-y

9f the interval J,, those for which s < 7,41 < s + 1 belong to the
mterva:l Jar1). Hence, it follows, in particular, that the end points
of the interval J,,* will be the points

PnS + pp_, and Pn S+D+pas

9nS + qn-y G (s+ 1)+ qa-y
Therefore,
MJ = Pn __ Pntpn-y — 1 — 1
n qn dn+ qn-1 4n(Gn+ qn-1) q2(1+gl_l-_l) ’
n
qn
M PnS+Pn-y _ Pa(s+ 1)+ pay l
P pas F dnoy dnGSF D+ dns

. 1
T {905+ qa-111gn s+ D)+ gni]

. 1
eIy

and, consequently,

W, A
M, .

T )

Here, the second factor on the right side is obviously always less than
2 and greater than 4. (The last assertion results from the facts that

I+qn—l
1

— I > and 14—+ 2=t ~3)

| 1 dn s sqn

s
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Therefore, we obtain

1 mse 2
3T < Ty, S (57)

This shows that, given an arbitrary interval of rank », the interval
of rank »n + 1 characterized by the value a,41 = s occupies a part of
the given interval of the order of 1/s% The fact that the bounds given
by the inequalities in (57) afe completely independent not only of the
numbers ky, k2, #¢¢ | k, but also of the rank # (and are determined
exclusively by the number s) is extremely important. If we rewrite
these inequalities in the form

MmS,
357

2MJ,
< QRJ 5;511 52 2 ’

sum over all intervals J, of rank » (or, equivalently, over ki, kg, ¢¢¢ ,
k. from 1 to =), and, finally, note that

EEDUI,-———'I,

Yo =we ("),

we obtain
2

1 SZ’

i
This provides a first approximation to the solution to the problem
being considered. We see that the measure of the set of points at which
some definite element has a given value s always lies between 1/3s?
and 2/s? (and consequently, is a quantity of the order 1/s%).

57 <JJ€E(”+1)<

13. Measure-theoretic evaluation of the increase
in the elements

We now have the necessary tools for solving problems involving the
measure of sets containing an infinite number of elements. As a first
example of such a problem, we shall prove the following simple theo-
rem.

THEOREM 29. The sel of all numbers in the interval (0, 1) with bounded
elements is of measure zero.

Proor. We denote by Ejs the sct of numbers in the interval (0, 1)
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all of whose elements are less than M. Let J, be any interval of rank »
whose points satisfy the conditions

aq<M (=12, ..., n. (58)

The points of the interval J, that satisfy the additional condition
@ns1 = k form an interval of rank # + 1. We denote this interval by
Jat1®. From the first of the inequalities in (57),

L4

B > ok Wy

so that
1
® Y >, YL
RoM koM

_1_- 2 1 1 du 1
>3 R Xy 7> 3% [ G=rmp R
i=1 M+1
and since
k%; Jilk-ll = -ln ’
it follows that

Y >

k<M

1 ’
m}sm/,, =N, (59

where |

SMFY’

T=1—

here, obviously, r < 1if M > 0.

If we denote by E{» the set of numbers of the interval (0, 1) char-
acterized by conditions (58), we see from inequality (59) that the meas-
ure of that portion of the set E{*V contained in some interval J, of
rank # is less than that of +9/,. Since, obviously, an interval of rank »
that does not belong to the set E{’ (that is, one that does not satisfy
the conditions in eq. [58]) cannot contain any point of the set E+V, if
we sum inequality (59) over all intervals of rank » in the set E(M"), we
obtain

MEBY < <MEY. (60)
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Successive application of this inequality gives us

MEFY < "WEY  (n>1).
so that

MEYW >0 as  n—»oo0,

since 7 < 1. But the set Ey that we have defined above is obviously
contained in each of the sets E{. Consequently,

ME = 0.
Now setting

we obtain
ME L D, MEy =0,
M=l

But every number with bounded elements obviously belongs to the set
Ey for sufficiently large M and, hence, belongs to the set E, which
proves the theorem.

We know (Theor. 23, Chap. II) that numbers with bounded ele-
ments are those numbers a that do not admit an approximation by
rational fractions better than in accordance with the law

P c
‘T ] g (61)
(We note that among these numbers are all quadratic irrationals.) We
see now that all these numbers form a sct of measure zero. In other
words, almost all numbers (that is, all but a set of measure zero) admit
a best approximation by rational fractions. Evidently, then, the basic
problem of the measure theory of approximation is the question of de-
termining the measure of the set of numbers admitting some specified
degree of approximation by rational fractions. In particular, what is
the best law of approximation admitted by almost all (see above) num-
bers? In other words, within what limits can the law given by in-
equality (61) be improved if we agree to neglect the set of numbers
which is of measure zero? We shall solve this problem in the next sec-
tion.
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THEOREM 30. Suppose that ¢(n) is an arbitrary positive function with
natural argument n. The inequality

is, for almost all a, satisfied by an infinile number of values of n if the
series 2., 1/ o(n) diverges. On the other hand, this inequality is, for al-
most all a, satisfied by only a finite number of values of n if the series
22, 1/ ¢(n) converges.

PRELIMINARY REMARK. In particular, if we set the function ¢(n)
equal to a constant positive number M, we conclude from Theorem 30
that the set Ej;, which we used in proving Theorem 29, is of measure
zero. Thus, Theorem 29 can be regarded as one of the simplest cases
of Theorem 30.

Proor. The first assertion of the theorem is proved in a manner com-
pletely analogous to that used in the proof of Theorem 29. Suppose
that Jm4s is an interval of rank m + » at all of whose points

8 < gm0 (=12 ..., n), (63)

(We shall not impose any conditions on ai, @z, »*~, Gm.) Kefaping t‘he
notation that we used in the proof of Theorem 29, we obtain the in-

equality, analogous to inequality (59),

(k) 1
oY <!~ saprmrarn | P

R<p(m+n+l)

When we sum this inequality over all intervals of rank m + # that
satisfy conditions (63) (denoting the set of all numbefs of the inter-
val (0, 1) satisfying these conditions by E, ), we obtain

] b)
W, i1 <{ | — 5 FrF DY | P

Successive application of this inequality gives
n
1
REq, < R, [T ~ srsmrm )

1=2

If the series 22, 1/¢(n) diverges, the series

2 1
‘223(14-?(”‘4-1))
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will obviously, for arbitrary m, also diverge. FFrom the theory of infinite
products, it follows that the product

n

I —somsm |

i=%
approaches zero as # — . Thus, we have, for arbitrary m,

WME,, ,—>0 as n—»co,

Butjevery number a for which
Uiy < g(m—t1) (=12 ...)

obviously belongs to all the sets
Enn (n

l
-
o
=

therefore, the set of all these numbers, which we shall denote by E,,
must be of measure zero. Finally, if we set

E,+E,+ ... +E,+ ... =E,

we see that NE = 0. But every number a for which inequality (62)
is satisfied only a finite number of times must, obviously, for sufficient-
ly large m, belong to the set E,, and, hence, to the set E. This proves
the first assertion of the theorem.

Suppose now that the series 232, 1/¢(n) converges. Suppose that
J. is one of the intervals of rank # and that J{¥, is an interval of rank
n+ 1 contained in J, and defined by the additional condition that
@41 = k. From the second inequality of (57), we have

WIF < o R,
so that

noY Mi<um ¥ &

R>9(n+1) k> e(n+l)

a 1
<2W"»§W

1 [ du | Ay
¢n+l)°
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If we denote by F, the set of numbers of the interval (0, 1) for which
a, > ¢(n) and sum the inequality obtained over all intervals J, of

rank #, we see that

4
R <gmFn

since ZINJ, = 1. Thus, the measures of the sets F, Fa, «s~, Fy, ~ss
form a convergént series. Denoting by F the set of those numbers in
the interval (0, 1) that belong to an infinite number of sets F,, we
then have?

MF =0.

But the set F is, of course, just the set of numbers for which the in-
equality (62) is satisfied for an infinite number of values of »#. This
proves the second assertion of the theorem.

14. Measure-theoretic evaluation of the increase in the
denominators of the convergents. The fundamental
theorem of the measure theory of approximation

THEOREM 31. There exisls an absolutely positive constant B such that al-
mosi everywhere, for sufficiently large n,

Gn=q,(a) < eBn.

PRELIMINARY REMARK. We saw in section 4 of Chapter I (Theor. 12)
that the denominators ¢, for all numbers a increase with increasing #
no more slowly than some geometric progression with absolutely con-
stant ratio. Theorem 31 asserts that, for almost all a, the numbers g, do
not increase faster than some other geometric progression, also with
absolutely constant ratio. This situation can be expressed in a differ-
ent way: there exist two absolute constants a and A (where1 < ¢ < 4)
such that, for almost all numbers a in the interval (0, 1), for sufficient-

ly large n,
n___
a<Vyg, <A

3 This is a well-known theorem in measure theory. However, here is the proof:
Obviously, the set F is, for arbitrary m, contained in the set 20 _mFa; the measure
of the latter set does not exceed Zoe,,MFa and, consequently, for sufficiently large
m, it may be made arbitrarily small.
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In fact, there is a considerably stronger proposition: there exists an
absolute constant vy such that almost everywhere

(g

V‘],, -7 (n — o0);
however, the proof of this theorem is considerably more complicated
and requires certain more powerful tools, which we shall discuss in
sections 15 and 16. Unfortunately, the framework of the present book
does not allow inclusion of this proof.? On the other hand, for our im-
mediate purpose, which is to establish Theorem 32, the property of
the numbers g, referred to in Theorem 31 is quite sufficient.

Proor. We denote by E,(g) (n > 0, g > 1) the set of numbers in the
interval (0, 1) for which
aa,...a,>g.

Obviously, this set represents a system of intervals of rank n. The
length of any one of these intervals is, as we know from section 12,

equal to
Py Pytp,,y 1 1

G 0¥, | LG TG S @a . aEy
since successive application of the obvious inequality
qn > anqn-l
gives
Gn > 8,8, ... Gy,
Therefore,

ME -1
2 (8) < E e ek (64)

a8,...a,>¢ n"a-1-:-

where the summation is taken over all combinations of natural num-
bers @, a2, +++, a, that satisfy the inequality aia; <+~ a, > g. To
evaluate this sum, we note that

1 n . 1
II al ‘I:.[ a,)a, (a,-{-l) <2 II-II ay(a;+1)

a;+1 a,+1a,+1 a,+1
?
. f X f / dxydx; ... dx,
p——i "‘2—‘ —_ e —22“5_ ]
xix X
a‘ Xy a, a, 172 n

3 Proof of the above statement was obtained by Khinchin in 1935. See “Zur
metrischen Kettenbruchtheorie,” Compositio Mathematica, 3, No. 2, 275-285 (1936).
Soon afterward, the French mathematician P. Lévy found an explicit expression
for the constant v, namely, In v = x%/(12 In 2) (see P. Lévy, Théorie de Vaddition
des variables aléatoires, Paris, 1937, p. 320). (B. G.)
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and, consequently,
n
S gl < i@
a.a..--a,,>2 i=l !
where J,(g) is the nth-order integral

f f de| dXQ dx,,
‘ x5

over the region
x> 1 =12 ..., n),

X Xg oo Xy 2> 8.

For g < 1, this region is obviously the region 1 < x; < » (for
i1=1,2, «++, n), and we obtain

[o o] n
fa(g)=[f§—fl =1 €< (65)
1
Let us now show that, for g > 1,
i
(@)= Z““"’ (66)
For n = 1, this equation is of the form
j‘ dx 1
g
0

and hence is true. Assuming it is true for n = k, we have

wd
Jk+1(g)=f x:H J /J,(u)du
1
1
1
=E{6[Jk(u)du+i/.1,(u)du}.

k+1 k+1
If, in the first integral, we substitute the value of J.(«) given by for-
mula (65) and, in the second, that given by formula (66) (which we
are assuming established for n = &, g > 1), we obtain

r-1
1 (Ing)!*! (Ing)
J.+1(g)=2' l+120m——} Z ’



68 CONTINUED FRACTIONS

which proves the assertion. Thus,

VE, (&) <5 23 ““,.g) :
1 0

In particular, if we set g = e4", where A > 11is a constant, we have
ME, (e4n) < en(1n2-4) 2 (A'I)' )

It is easy to see that in this sum each term is less than
(An)"
nl '
therefore, if we use Stirling’s formula for approximating the factorial,
we obtain
An)"
ME,, (eA) < g in 2-A)n( n!)

n(An)"

< Clen“n?' A) —
n"e "y n

< CyV ne=n(A-in A=in2-1),

where C, and C, are absolute constants.
But if 4 is sufficiently large,

A—InA—In2—1 >0,

and, consequently IE,(e4") is less than the nth term of some con-
vergent series. Since the series

2 ME, (e)
A=l

converges, every number in the interval (0, 1), with the exception of

a set of measure zcro, belongs to only a finite number of the sets
E,(e4"). This means that for almost all numbers in the interval (0, 1),
we must have, for sufficiently large »,

aa, ... a,<en
also, since
9n=0n0n1 1T 9n-2< 28,95,
and, consequently,
n
g, < 2°a,a,_, ... 054,
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it follows that almost everywhere, for suthiciently large n,
9n < 2npAn — eBn'

where B = A + In 2. This completes the proof of Theorem 31.

This result, which in itself is of considerable interest, is especially
important for us at the moment, since we can use it to obtain a simple
solution to the basic problem of the measure theory of approximation.

THEOREM 32. Suppose that f(x) is a positive continuous function of a
posilive variable x and that xf(x) is a non-increasing function. Then, the
inequality

l p{ < 1@ f(q) (67)

has, for almost all a, an infinite number of solutions in inlegers p and q
(with ¢ > 0) if, for some positive c, the integral

[ fax (68)

diverges. On the other hand, inequality (67) has, for almost all a, only a
finile number of solutions in integers p and q (with ¢ > 0) if the inlegral
(68) converges.

PRELIMINARY REMARK. In particular, on the basis of Theorem 32,
the inequality

, !< *Ing

has, almost everywhere, an infinite number of solutions. On the other
hand, the inequality

has, for every constant ¢ > 0, almost everywhere, only a finite num-
ber of solutions. From these facts, we can get an approximate idea of
what changes to expect in the general law of approximation if we agree
to neglect a set of measure zero.

PRrOOF. Part 1. Suppose that integral (68) diverges. Let us define

¢ (x) =eB*f (eB¥),
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where B is the constant referred to in Theorem 31. Then, the integral
A

[ eax=3 fAf(u)du.
Ba

a

where 4 > a > 0, increases without bound as 4 — . Since the func-
tion ¢(x) is, by hypothesis, non-increasing, the series

,.;; ¢ (m)

diverges. On the basis of Theorem 30, we now conclude that, almost
everywhere, the inequality

is satisfied for an infinite set of values of i. But when this inequality
is satisfied,

4 1 1 i
a— < < —— <2, (69)
T, T ey, 9

On the basis of Theorem 31, we have, almost cverywhere, for sufficient-
ly large 4,
4 < eBi,

so that

i > ln‘]l

Therefore, inequality (69) almost everywhere implies the inequality

Ing
P ‘?( BI)___f(q,)
a——"<—.,——— A
9 q; 9

for sufficiently large 7. This inequality is satisfied almost everywhere
for an infinite set of values of s. This proves the first assertion.
Part 2. Let us now suppose that integral (68), and hence the series,

2 fm),

£l
th8
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converges. Let us denote by E, the set of numbers a in the interval
(0, 1) that, for a suitably chosen integer &, satisfy the inequality

I |<f(n)

(Obviously, the set E, consists of the set of intervals of length 2f[x]/n,
with centers at the points 1/n, 2/n, +<+, [n — 1]/n and of the inter-
vals {0, f[n]/n) and {1 — f[n]/n, 1}.) We then have

ME, < 2f (n).

(The symbol < holds if f[#] > %.) Thus, the series

2IME,
n=1

converges. We conclude from this, just as we have done on previous
occasions, that almost every number a in the interval (0, 1) can belong
to only a finite number of sets E,. This means that almost all the num-
bers a in the interval (0, 1) satisfy the inequality

>t

for a suthiciently large positive integer ¢ and for an arbitrary integer p.
This proves the second assertion of the theorem.

In the next section, we shall learn a method that makes it possible
to solve much more profound problems in the measure theory of con-
tinued fractions.

15. Gauss’s problem and Kuz’min’s theorem

The problem that we are about to discuss was, historically, the first
problem in the measure theory of continued fractions. This problem,
posed by Gauss, was not solved until 1928.4

Setting, as usual

a=1[0; a,, a, ..., a,, ...l

rn="ra (=185 8pi1 @pi2 -1

4 See R. 0. Kuz'min, “Ob odnol zadache Gaussa” (a problem of Gauss), Doklady
akad. nauk, ser. A, 375-380 (1928). Another solution was published in the article
by P. Lévy, “Sur les lois de probabilité dont dependent les quotients complets et
incomplets d’une fraction continue,” Bull. Soc. Math., 57, 178-194 (1929). (B. G.)
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we denote by z, = z,(a) the value of the continued fraction
[0; Qpip Gpio v ']'

that is, we set

2,=r,—a,

Obviously, we always have
0Lz, < 1.
We denote by m,(x) the measure of the set of numbers a in the inter-
val (0, 1) for which
z,(a) < x.
In one of his letters to Laplace, Gauss stated that he had succeeded
in proving a theorem that implied that

lim m,(x)= ‘L_(l‘n-; %)

n-»oo

(0 < x~‘\< 1).

In his letter, he indicated that it would be very desirable to obtain an
estimate for the difference

In(1 + x)
"l = g (70)
for large values of i, but that he had been unable to do so. Apparently,
Gauss’ proof was never published, nor were other proofs of his assertion
known before 1928, when Kuz’min published his proof and gave a good
estimate for the difference (70). The present section is devoted to an
exposition of these results and of certain gencralizations of them that
we shall need later®
It was already known to Gauss that the sequence of functions

my (%), my(x), my(x), ..., my(x), ...
satisfies the functional equation

[se)

Mpn @)= N ma(§) = ma () fO<H <L a0 D

k=1

s Like Gauss, Kuz’min formulated the results in probability-theory terms, which,
of course, does not affect their content from the standpoint of measure.
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To show this, note that, on the basis of the obvious relationship

1
2, = ———,
n
Ans1+Zp4

the inequality
zn+l < X

is satisfied if, and only if, for a suitably chosen positive integer &,
1 < 1
k4 x <z S k-

Since the measure of the set of numbers satisfying this inequality is

obviously
m(3) = m(555)

relationship (71) holds.
It can casily be verified directly that the function

¢(x)=ClIn(1 4 x)

satisfies the equation

¢(x)=g{¢(’zlz)”‘?(k_j—7)}

for an arbitrary constant C, which probably helped Gauss in finding
the proper expression for the limit of the function m,(x) as n~— .
Formal differentiation of equation (71) gives

mi.+.(x>=’§ (k+1x)2 ”‘;(kix)‘ (72)

The validity of (72) can easily be shown in a rigorous manner. Since
obviously zo(a) = a, we have mo (x) = x, and hence m’s(x) = 1. If the
function m’,(x) is, in general, bounded and continuous for some #, the
series on the right side of (72) converges uniformly in the interval
(0, 1). The sum of this series is therefore bounded, continuous, and
equal to m’,11(x) (due to the well-known theorem on termwise differen-
tiation of series). Thus, (72) is proved inductively.

Equation (72) is much more convenient for making investigations
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than is equation (71). Kuz’min’s basic result, which we shall now prove,
has to do with this relationship.

THEOREM 33. Suppose that f1(x), fo(x), ~++, fu(x), ==+ is a sequence
of real functions defined on the interval (0, 1) that, on that interval, salisfy
the relationship

fanr @) =X, fl) >0, @3
k=1

If, for0 < x < 1,

0 ey <M
and
[ Fo(0)| < g,
then,
[ =1 +H04eT 0L x<),
where

1
;o
a:moffo(z)dz. 0] < 1,

N is an absolule positive constant, and 1 is a posilive conslan! depending
only on M and u.

The proof is complicated, and therefore we shall first give several
elementary lemmas.

LemMA 1. For arbitrary n > (),

(1)
__\ Pn+ XPp— 1
f” (x)—z f0(9n+xqz—: ) @n+xg,-)% "' (74)

where (p/q, (pn + Pn=1)/(¢n + Gn1)) is an arbilrary inlerval of rank n
and the summation lakes place over all intervals of rank n (or, what is the
same thing, over the elements ay, as, ~~~, @, from 1 fo =),

Proor. For n = 0, (74) is trivial, because in that case there is a
unique interval (0, 1) for which po = 0, o = 1, p_; = 1,;and ¢_; = 0.
Assuming now that equation (74) is valid for some #n, we have, on the
basis of the fundamental equation (73),

an(x):kE'l (Iz—:x)’ fn(k}{-x)
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1
= @ pat o Pan
=2(k+}x)22f0 ka 1] 2
k=1 qn+mqn—l (‘In'f'm qn-l)
(n) w
_ Xf { (Pnk + Pp-1) + xPp } ]
- OV (gnk + gn-1) + x4, {(@ak + 9n-1) + xq,}?
* (nt1y

=Zf(Pn+l+XPn) 1
NGner+ XG0 ) Gner + xqa)*
which proves the lemma.

Lemma 2. Under the conditions of Theorem 33, for n > 0,

|10 < =5 +4M.

2'1‘3

Proor. If we differentiate (74) termwise, we obtain
(1) (n)
/ AP =y \ dn-1
= . el A ) -y
j" (x) z fu ) Gn+ %xq,-))" Z fo ) Gn+ xq4-1)°
where
g PntXPn-r
dn+ XGn-1

The validity of termwise differentiation follows from the uniform con-
vergence of both sums on the right side for 0 < x < 1. We note that
1 2

@n + xqn-1)? < 90 (Gn+ qn-1)
Then, on the basis of Theorem 12 of Chapter I,

9,9, +4,_)>¢2> 2",

and, in view of the obvious relationship

(n) (n)

E q(Qn"*'l'qn-l) 22

we have, because of the conditions of Theorem 33,

]f;(x)|<2,f‘—_3+4M.

Pn __ PntPnoy | _ 1
dn 9a+ qn- )

which was to be proved.
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Lemuma 3. If
t T
_l_-{:x_<f"(x)<m O,
it follows thal
t T
m<fn+1(x)<H_—x 0L ).

Proor. Under the conditions of the lemma, the fundamental equa-
tion (73) gives

«

O T 1

t 1
) T Gy </ < T G+o7’
T Ny k=1 kLx
or

N 1 \ 1
tg:l (k+x) (k+x+1) <Jan(0) < T;j‘ GFx)(e+x+1) "'

or, equivalently,

tkE-:l(k_:x_k+L+l)<fn+l(x)< 7'5(%_{__}:;——*_1)’

or, finally,

t . T
T_{_—x<fn+l(x)/\ 1+X '

which was to be proved.
LEmma 4.

1 1
[fa@dz= [ fo@dz =01 2 ...
[V 0

Proor: Because of the fundamental cquation (73) (for n > 0),

o 1
[r.@a=Y ffn—l(?%)ﬁz—v

0 k=1
L
=Y [ fwau= [ 1, @adu,
k=11 0
®HT

so that the lemma follows by induction.
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Proor or TuEOREM 33. The function fo(x) is, by hypothesis, differ-
entiable and hence continuous for 0 < x < 1; since it is, again by
hypothesis, positive in that interval, it must have some positive mini-
mum, which we shall denote by m. From the condition m < fo(x) < M
(for 0 < x < 1), we obtain

2M
iy <H@W<TEy 0<x<,
or

a
Ty </ <5y 0<x<,

where

We now define

O<LxLl, n=0, 1,2 ...).

Fr ) — 1 =4, (0)

On the basis of Lemma 3, the function F(x) = g/(1 + x) satisfies the
equation

0= S (k)

(which can easily be shown by direct verification). From this, it obvi-
ously follows that the sequence of functions

P (%) (%) ooy Pu(X) ...
satisfies (73). Therefore, all the conclusions that we have deduced from
that equation, in particular (74), are valid. As before, we set

Pn+ Xpn_:

u =
9n+ X951

for brevity. Thus, we have
(n)

1
L (X)) = ) —
(!’n( ) 2‘{0(“)(q+an_l)3y
so that, on the basis of the obvious inequalities

I+ %901 <9n+92-1 <29,  and o (1) >0,
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we obtain
(n)

60 () > 5 X% ) GG F Ty (75)

On the other hand, the mean value theorem gives us

i g

1 (n)
1O , 1
2 6/ %(2) a2 = 2 Z %o (4) 40 @n+qu-1) "’ (76)

where #’ is one of the points of the interval (pa/qu, (o + pno1)/
(gn + gn-1)), and 1/[¢a(gn 4 ¢a=1)] is the length of this interval. Re-
lations (75) and (76) give us
! ()

1 ) 1 " m _—-———l S
"""(")”70f w(@dz > X (v — 7@ gy
But since, obviously, an

leg() < fo) [ +eg<p+g OLxL),
it follows that

%0 — e @) < (w+ @) u—u| < it
<P£g<i;€‘
Inequality (77) then givlcs us
w0 > 5 [to@rds—EFE—s —+LE,
where o

1
1
l=—2* f(PO(Z)dZ.
0

Thus, we obtain

-nil
f2 ) > iz 1= g2 kD &

14 x T l4x

#+g

>

If we examine the sequence of functions

d/n(x) 1+x fn(x) (n=0,1, 2....)
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and follow the same line of reasoning as before, we obtain the inequality

G-—1 -n+1
where )
1
=5 [ W@z
* 0

Since £ > 0 and I’ > 0, we have, for sufficiently large n,

£<8<G, <@

and

G—g<G—g—(+1)+2""" (w40

Also, since
1
, 1 G
1+1=-2—f H_gdz——(G 0! 2 :
0

we have

G,—g <(@—g)+27"" w40,

where
is an absolute positive constant.
Let us summarize the results that we have obtained. From the con-
ditions that
g G
m‘<f0(x)<l‘j+_—x-' [fo()| <p

we have shown that, for sufficiently large n,

(¢}
14 x
where

£<8<G, <G, G —g <(G—g)d+42""1 +0).
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If we now start with the function f.(x) instead of fy(x) and repeat the
line of reasoning that we have used, we obtain

<f2n(x)<1

1+x
and
£, < £, <G, <Gy,

G,— 8, <8(G,—g)+ 27" (p, 4 @),
where u; is a positive number such that

1,0 <wm 0L xL D),

If we carry this process further, we obtain, in general,

SE o <f,,,(x)<1+x

and, for r > 0,
8,1 << gr<Gr<Gr—l' (78)
Gr'— gr < B(Gr—] - gr—l) +‘ 2—’““ (P‘r»l +Gr—1)'

where u,_; is a positive number such that
| froty (O] < e O<x <),
On the basis of Lemma 2, we can set

b= g+ 4AM (r=0,1,2 ...

and, consequently, if z is chosen sufficiently large,
B, << M (r=1,2,...)
Thereforc) successive appllcatlon of inequality (78) gives us (forr = 1,
e, m
G,— 8, <(G—g) 27" {(p+2M)8""!
A TMI2 A TMI 3 L - TMTM).
Since 8 < 1 is an absolute constant, it obviously follows that
G,— g, < Be™'n,
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where A > 0 is an absolute constant and B > 0 depends only on M
and u.
From this, it follows, first of all, that there is a common limit

lim G, = lim g, =a
n->»oo n—-»o

and that

/e — 5| <Be  0<xg<n. a9

so that, in particular,
1

ff,.a(z)dz—>aln2 (n—~» 00),

and, consequently, on the basis of Lemma 4,

1
a=p3 [ fo(2)a.
0

Finally, suppose that

RPN (n41)2
Since, on the basis of inequality (79),
a—2Be—™ a + 2Ben

—TFx < fr (%)< Tz
it follows from Lemma 3 that

2—10
< ey < AR,

a—2Be™M8
14x

or

fN(x) T +x < 2Be-M — Ae=)(n+1) < Ae—lVN

where 4 = 2Be*. This inequality, which we have established for suffi-
ciently large N, is obviously true for all N > 0if we choose a sufficient-
ly large constant A. This completes the proof of Theorem 33.

Let us now turn to Gauss’s problem. If we set

fa)=m (x) O<LxD),
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we obtain fo(x) = 1. Therefore, all the conditions of Theorem 33 are
satisfied. Thus, we obtain

__“_+_1___W,<Ae_wn‘ OLxL, (80)

from which, by integrating, we obtain

—EED | caeVE 0 gxg),

where (1 and X\ are absolute positive constants. This not only proves
Gauss’s assertion, but also gives a good approximation of the remainder
term.®

Let us now use this result to obtain an approximation of the meas-
ure of the set of points for which a, = & for sufficiently large values
of n. Since, obviously, the condition @, = % is cquivalent to the in-
equalities

1 1

BT S e
it follows that
T
W?E(Z)=m,,_x(%)—~mn_x / o ().
On the basis of inequality (80), it follows that
1
tn { 1+ pooy | ' _
. n k(k+2) A N
"DeE(lz)“ 2 <wxexrpe " @D

We now have a precise limiting relationship for the quantity EDEE(:),

¢ Thi method that Lévy used makes it possible to obtain a better approximation.
He showed that

m,,(x)—-l-n——(]lT-IQ-—{)— < Ae—Mn 0L

(B. G.)
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for which we had only rather crude inequalities in section 13. Specifi-
cally,

1
mzf(:)-»ln{l+1:§k+2)} (n - co).

Thus, for example, the measure of the set of points for which ¢, = 1
approaches the quantity

In4— In3
In2

asn— .

Besides proving Gauss’s assertion, Theorem 33 enables us to obtain
a more general result, the importance of which will be shown below.
We denote by M, (x) the measure of the set of numbers belonging to
some fixed interval of rank % and satisfying the condition z;,, < z;in
other words, M,(x) is the measure of the set of numbers in the interval
(0, 1) satisfying the condition

Q=TI @G=Ty ... G=T 4, <X (82)

where r,, 7y, «++ , 7, are certain fixed natural numbers and where
n 2 0 and #(0 < x < 1) can be varied arbitrarily.

For the conditions (82) to be satisfied, it is obviously necessary and
sufficient that

1 1
O=r B=Iy oo G=rn T <Zaa <o

where 7 1s some natural number. It then follows that

M= 3 { Moy (L) = 1,1 ()} a1, o<,
1

r=

so that the sequence of functions My(x), M,(x), ==+, M.(x), *+°
satisfies equation (73).
An arbitrary number a of the interval [pi/qe, (Px + pr—1)/

" (g% + ¢«-—1)] can be represented in the form

a=ﬂk_+_l_i'_pL-_L
et Ny

’
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or, since z; = 1/7,44,

_ Pyt P,

a = .
9t 2,49,

For 2, < x, the number a must lic between pi/gr and (pi + Xpr—i)/
(g& + %qc.1). Therefore,

My(x)=

Po  Pet Py | x . (83)
9, 4+ *q9,_, 9,9, T 9,_1%
If we now set

1, 2, ..., &

M,,(x)=ED2E( )x,,(x) >0 0<xLD),

Ty Py vy Ty
we obtain a new sequence of functions:
Yo () X () vy (), o

here, the functions x.(x), which differ from the corresponding func-
tions W ’.(x) only by a constant factor, also satisfy (73). Since obviously

1, 2, ..., &
ne(t %t )

fl, I‘2, “ sy rk

Py  Petp, 1

9 9t 9, :qk(qk t4,2))’

equation (83) gives us

4,+49,_)x
B =g e
so that
Viy e Te et 9 0)
xo(x)_" (qlz+qk—lx)2
and
” . quqk—l (qk + qk— l)
L R
Thus,
F<HE <2 Gm[<E 0<xL),
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This shows that Theorem 33 can be applied to the sequence of func-
tions x'a(x), where the numbers 4 and A will be arbitrary constants
(in particular, independent of 7y, rz, +++ , 7;). We thus obtain

ey M, (x) o AotV 1g
X, (¥)= (L2 F ={T¥ome T 94e SO L
(rlorﬂso-urk)

If we integrate this relation between the limits 1/(r + 1) and 1/r,
where 7 is an arbitrary natural number, we obtain, for |§’| < 1,

M"(%)_M"(r’jlr“l)=]“{'+ﬁr‘l+—27}+ A,y yE.
me(,, ;) " AR

and since, obviously,

M,,(—i)—-M,,( 1 )=9JIE( l,2....,k.k+n+l)'

r+l rn ra ..., rk;’.

we have

mezs( L2... 4 k+n+1)

’l' rz,..., rk, r

1
ln{l+r } ’ —XV?)
(r+72) ¢ b’ Ae g L2 ..., 4
( In2 f(f+l) IRE("I: rll'-u’k).

Finally, we can sum this relationship from 1 to « for certain of the
numbers 7y, 72, * -+, 7, (arbitrarily chosen). As a result of this summa-
tion, the terms with like subscripts disappear on both sides of the equa-
tion, so that instead of a succession of subscripts 1, 2, «++ , &, we ob-
tain a succession of completely arbitrary subscripts ni, na, *<+ , 5.
In all other ways, the equation remains unchanged. Thus, we obtain
the following theorem.

THEOREM 34. Two absolute positive constants A and \ exist such that,
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Jor mi < my < -+ < n < nyy and for arbilrary posilive inlegers
T, 73,00, 7, 7,

SJRE("" g ..., Ny n,+.) ln{ 1+ 1 }

iy P ovar I'p T . r(r+2)
nlr nz: vo ey nl ]n2
anE(rlv 3000 f‘)
l A - VnH_‘—n‘—l.

< rir+1) ¢

This result shows not only that the measure of the set of numbers
in the interval (0, 1) for which a, = r approaches a definite limit as
n— o, but also that the relative measure of the set of numbers satis-
fying this condition, given arbitrary fixed values of an arbitrary set
of preceding elements, approaches the same limit.

16. Average values’

The results of the preceding section enable us to prove the following
general proposition.

THEOREM 35. Suppose that f(r) is a non-negative function of a natural
argument r and suppose that there exist positive constants C and § such
that

3

1
f(n<cr? r=1,2 ...).

Then, for all numbers in the interval (0, 1), with the exception of a set of
measure zero,

Ly SN =t
tim - Y /(@)=Y /() g SO
k=1 r=1

n»c

PrELIMINARY REMARK. The convergence of the series on the right
side of (84) follows, of course, from the condition imposed on the func-
tion f(r).

Proor. Let us define

1 1
ff(a,,)da:uk, f{f(ak)—-uk}?da..—.—.bk,
0 0

7 The results of this section are to be found in Khinchin’s article “Metrische
Kettenbruchprobleme,” Compositio Mathematica, 1, 361-382 (1935). (B. G.)
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1
f {f(@)—u) {f(ap)—u,}da=g,,,
0

k_E‘ {f(ap) — uy) = s, =5, (a).

The existence of all these integrals follows easily from the properties
assumed for the function f(r). For since

(f (N2 < Cir-n,
it follows that

1 o -
Jir@ora=Yropme(t) <oy L2,
0

r2
r=1 r=1

is meaningful. The existence of all the integrals then follows on the
basis of the Bunyakovskii-Schwarz inequality. In particular, it fol-
lows that

1
b= [/ @da—ui<c,
0

. - (85)
u=[f@pda<) [(/@p)da<VC,.
0 0
Furthermore, for £ > 1, we obviously have
1
8= ff () f (ay)da — uu,
’ (86)

= 'E_l F0 f ORE(} ¥~ ua,.

But, on the basis of Theorem 34 and the inequalities of section 12,
1

21)25(” k)_ln {‘+m} ,m.:(i)

r,s In2
Ae-lyk_—T—_i {
< 22(;) @

< 3Ae-MVETTIRE (:)ED(EG)



88 CONTINUED FRACTIONS

and

In l+———1——
‘thE(:)__ { 1§§s+2)}, o

Ae-MVETT .
<SGFEL < 3Ae\Vk- ‘SDIE( )

If we multiply inequality (88) by IRE ( :) and compare the resuit with
inequality (87), we obtain

| e, 5)—me () me ()
< 6Ae-AVE=I- 1§1RE( )fD(E( )

as a result of which (86) gives us

gn— 2 FOFORE(D)E(#) 4w,

7, s=1

< 6Ae- VE=I-I Z f(r)f(s)wee( )meE( )

rSsu=l
Noting that

[~]

X IO BE(,)DE(F)=uu,
r, s=1

" and using the second inequality of (85) to estimate the right side of this
equation, we obtain

| gl < 6Ae~MVE-T-lyu, < BAC,eMVE-T-1, (89)
From (85) and (89), we have, for » > m > 0,

] 1 n 2
‘ f(s.—s,,,)i’da=f[ 2 (f(ak)—uk)} da
0 0

k=m+1

a1
= 2 f{f(ak)_ak}zda

k=am+1 0
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n n 1 (90)
+2 Y Y [@—u)lf@)—u,)da

l=mitl k=i+1 0

= 2 be+2 E E < C,(n—m)

-m+l lem+l Ral+l

+ 124C, 2 Z e VTS < C, (1 — m),

lam+]l kuiy}

where C; is some new positive constant.
We now denote by e, the set of numbers in the interval (0, 1) for
which

Isyl>en

where ¢ is an arbitrary given positive constant. Obviously,

1
f sflda > f sgda> c’n’fl)(e,,,
0 [

so that inequality (90) (for m = 0) gives

1
r s;o‘, da
Re, < o < 52
8BTS 23 s’
Thus, the series
o
2 Mep
[ T3

converges and, consequently, as we know, almost every number in the
interval (0, 1) belongs to only a finite number of sets ey, for n = 1, 2,
3, <<« . This means that, for almost all numbers in the interval (0, 1)
and for sufficiently large »,

8,0
w <
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and since e is arbitrarily small, it follows that almost everywhere

Sy
lim — =0, 91)

n>»o

Furthermore, for n* < N < ‘(n + 1)%, formula (90) gives
1
f(sN —sw)da < Cy(N —n?) < Cy(2n +1) < 3Cyn.
0

If we denote by e,,» the set of numbers in the interval (0, 1) for which
|sy — s;2] > en? and if we set
(n+1):—l
eﬂ, N = En)

-p

we then have, for n? < N < (n + 1)

1
f (SN — Sp)2 da > f (sv — sm)?da > en'e,, y,
i 0 e,,' N

meen' N < 3C2

e2nd *
(n+17-1

WE, < Y, Mewn<
N=n

3C,(2n+1) _ 9C,

gzna = 202 4

so that the series 252, INE, converges. Almost every number in the
interval (0, 1) must then belong to only a finite number of sets E, and,
hence, 1o only a finite number of sets e, ». But this means that almost
all numbers in the interval {0, 1) satisfy the inequality

]SN — S,,:, < en?,

for sufficiently large # and for n? < N < (n 4 1) In other words, al-
most everywhere
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for sufficiently large » and for #»* < N < (n + 1)%. Since ¢ is arbi-
trarily small, it follows that almost everywhere

Sy Sps
It

=0 [#—>00, PN (n41).

On the basis pof equation (91), it then follows that almost everywhere

i’!...,o [n—>co, PN L (n+ 1)},

nd
and hence, a fortiori,

SN
~ >0 (N — 0).

In other words, almost everywhere,

E f(a)— E U0 (No>oo).  (92)
I
But from formula (81) of the preceding section

gf(r) ’ﬂRE(f)

m(1+7_.._.)
(r+2) - T
In2 <AemMVET r{r(ci)- 1) <A VE,

Ef(r) { ’("+2)}

where A4, is a new positive constant. Therefore,

u;.—»if(r) l———-———-—-n{l+ ’(r+2)} (k& — 00),

re=1

and, consequently,

N © 1
Xl,—zu,,-»zf(r) ]—n—{—liT;-g—iz)—} (N — 00).

k=1 ral
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Relation (92) then gives us

N % {1+ ——
‘ —,‘ygf(a,)—»;fm i 1;5{“”}

almost everywhere in the interval (0, 1). This completes the proof of
Theorem 35.

This theorem enables us to establish quite a number of properties of
continued fractions that are satisfied for almost all irrational numbers.
For example, let us set

f(r)—_-'l.for r==ea and f(r)=0. for f'*k.
where & is some (arbitrary) natural number. In this case, the sum

ba(®)= 3, f (@)

i=l

obviously represents the number of times the integer % occurs among
the first » elements of a given continued fraction. On the other hand,

the ratio

Yu(k) _:"2 f(a[)
=1

gives us the density of the number £ among the first # elements of the
given continued fraction. Finally, the limit

Jﬂ_"‘.%(_’fl =d (k),

if it exists, is naturally interpreted as the density of the number £ in
the entire sequence of elements of the given continued fraction.

Since the function f(r) that we have defined clearly satisfies all of
the requirements of Theorem 35, we conclude, on the basis of that the-
orem, that, for arbitrary k, this density exists almost everywhere and that
1 has the same value almost everywhere. Furthermore, the same theorem
makes it possible for us to calculate the value of that density. Obvious-
ly, we have almost everywhere

In4—In3 n9—In8

n
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and so on. Thus, an arbitrary natural number occurs as an element in
the expansion of almost all numbers with equal average frequency.
We obtain another interesting result by setting

f(r)=mr r=1,2 3,...).

All the conditions of Theorem 35 are then satisfied. Therefore, we see
that almost everywhere

..Zlna »Zln(r) {H-m} (8 =0,
—-—1.-—.—-..
or, equivalently, |
Jar
ValaQ oo a —»H{ r(r+2)}ln2

r=1

Thus, the geometric mean of the first # elements approaches the abso-
lute constant

In?
}ﬁ"z

H{l"}-;—(;lT'QT =2,6 ...,

r=1

almost everywhere as n — o,

Obviously, Theorem 35 makes it possible to establisir analogous re-
sults for a whole series of other types of average values. However, in-
vestigation of the arithmetic mean

n

= ©3)

i=1

by this method is impossible, because the corresponding function
S(r) = r does not satisfy the conditions of Theorem 35. However, it
is easy to see from more elementary considerations that, almost every-
where, the expression (93) cannot have any kind of finite limit. For
Theorem 30 (sec. 13) tells us that almost everywhere

G, >nhn
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for an infinite number of values of #, and hence, a fortiori,

n n
1 QU
}: a; > nlnn, and hence, " Z a,>Inn.
i=1 =]
Thus, the quantity (93) is almost everywhere unbounded and there-
fore, as we stated, cannot have a finite limit.
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